News
Tesla’s patent for a stealthy, electromagnetic wiper is perfect for the new Roadster
A recently published patent application from Tesla has revealed that the electric car maker is designing a stealthy, unconventional windshield wiper system that seems particularly tailor-fit for the company’s upcoming halo car: the next-generation Roadster. Apart from looking the part of a futuristic wiper assembly for a futuristic vehicle, Tesla’s patent also allows optimizations in range.
As background, Tesla noted that conventional wiper systems usually utilize electric motors that move one or more wiper blades to clean the windshield of a vehicle. The assembly of such systems involves several mechanical components such as gears and bearings, which, in turn, enable the wiper blades to slide across the windshield.
This sliding motion of the mechanical components creates significant friction during operation. This results in the need for additional power to be supplied by a car’s in-vehicle battery, thereby reducing an electric vehicle’s range. Traditional wiper systems are usually prone to rust and wear as well, which could bog down a wiper assembly and make it inefficient in cleaning a windshield. This could be an issue in regions that experience a lot of rain or snow.
With this in mind, Tesla argues that there is a need to design an innovative windshield wiper system that cleans better, and lasts longer. Such a system was outlined in a recently published patent, plainly titled “Electromagnetic Windshield Wiper System.” Tesla’s design for its electromagnetic windshield wiper system involves the use of a “linear actuator that may include a guide rail and an electromagnetic moving block.” The design is modular, enabling easy installation. The wiper arm and blade could be attached to each other as well, forming a “linear mono wiper in an uncluttered design.” Tesla describes how its windshield wiper assembly works as follows.
“The disclosed electromagnetic wiper system may include a linear actuator that may include a guide rail and an electromagnetic moving block. The guide rail may include a plurality of permanent magnet bars that may be disposed horizontally along a curvature of the windshield of the vehicle. The electromagnetic moving block may act as an electromagnetic train, and may include a plurality of perforations and at least an electromagnetic coil that surrounds the plurality of perforations in the electromagnetic moving block.
“The linear motion of the electromagnetic moving block through the plurality of permanent magnet bars may be controlled to steer the wiper arm that may be coupled to the electromagnetic moving block, back and forth across the entire length of the windshield to wipe a defined region, for example, the entire transparent area (i.e., near cent percent area) of the windshield. This may result in minimal friction during the linear motion of the electromagnetic moving block.”
What is pretty interesting about Tesla’s electromagnetic windshield wiper patent is that the entire mono wiper assembly stows away beneath the hood of a vehicle when not in use. This, apart from giving an electric car windshield a clean, uncluttered look, improves a car’s aerodynamic performance during operations. Tesla notes that these optimizations will be particularly significant at high speeds.
Tesla did not state which of its present or upcoming vehicles will be using the electromagnetic windshield wiper system outlined in the recently published patent. That being said, a look at the benefits of Tesla’s design suggests that the innovative wiper system will be a perfect fit for the next-generation Roadster.
The Roadster’s static models sported a conventional wiper system, after all, and they look almost out of place in such a futuristic vehicle. Considering that the new Roadster is Tesla’s halo car, it makes perfect sense for the company to go all out in its optimizations, windshield wipers included. Couple that with the Roadster’s emphasis on aerodynamics and high-speed driving and this patent makes even more sense for the all-electric supercar.
Tesla’s full discussion on its electromagnetic windshield wiper system could be accessed here.
Elon Musk
SpaceX Starship Version 3 booster crumples in early testing
Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory.
Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
Booster test failure
SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.
Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.
Tight deadlines
SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.
While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.
News
Tesla FSD (Supervised) is about to go on “widespread” release
In a comment last October, Elon Musk stated that FSD V14.2 is “for widespread use.”
Tesla has begun rolling out Full Self-Driving (Supervised) V14.2, and with this, the wide release of the system could very well begin.
The update introduces a new high-resolution vision encoder, expanded emergency-vehicle handling, smarter routing, new parking options, and more refined driving behavior, among other improvements.
FSD V14.2 improvements
FSD (Supervised) V14.2’s release notes highlight a fully upgraded neural-network vision encoder capable of reading higher-resolution features, giving the system improved awareness of emergency vehicles, road obstacles, and even human gestures. Tesla also expanded its emergency-vehicle protocols, adding controlled pull-overs and yielding behavior for police cars, fire trucks, and ambulances, among others.
A deeper integration of navigation and routing into the vision network now allows the system to respond to blocked roads or detours in real time. The update also enhances decision-making in several complex scenarios, including unprotected turns, lane changes, vehicle cut-ins, and interactions with school buses. All in all, these improvements should help FSD (Supervised) V14.2 perform in a very smooth and comfortable manner.
Elon Musk’s predicted wide release
The significance of V14.2 grows when paired with Elon Musk’s comments from October. While responding to FSD tester AI DRIVR, who praised V14.1.2 for fixing “95% of indecisive lane changes and braking” and who noted that it was time for FSD to go on wide release, Musk stated that “14.2 for widespread use.”
FSD V14 has so far received a substantial amount of positive reviews from Tesla owners, many of whom have stated that the system now drives better than some human drivers as it is confident, cautious, and considerate at the same time. With V14.2 now rolling out, it remains to be seen if the update also makes it to the company’s wide FSD fleet, which is still populated by a large number of HW3 vehicles.
News
Tesla FSD V14.2 starts rolling out to initial batch of vehicles
It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.
Tesla has begun pushing Full Self-Driving (Supervised) v14.2 to its initial batch of vehicles. The update was initially observed by Tesla owners and veteran FSD users on social media platform X on Friday.
So far, reports of the update have been shared by Model Y owners in California whose vehicles are equipped with the company’s AI4 hardware, though it would not be surprising if more Tesla owners across the country receive the update as well.
Based on the release notes of the update, key improvements in FSD V14.2 include a revamped neural network for better detection of emergency vehicles, obstacles, and human gestures, as well as options to select arrival spots.
It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.
Following are the release notes of FSD (Supervised) V14.2, as shared on X by longtime FSD tester Whole Mars Catalog.


Release Notes
2025.38.9.5
Currently Installed
FSD (Supervised) v14.2
Full Self-Driving (Supervised) v14.2 includes:
- Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
- Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
- Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances.
- Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
- Added additional Speed Profile to further customize driving style preference.
- Improved handling for static and dynamic gates.
- Improved offsetting for road debris (e.g. tires, tree branches, boxes).
- Improve handling of several scenarios including: unprotected turns, lane changes, vehicle cut-ins, and school busses.
- Improved FSD’s ability to manage system faults and improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
- Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
- Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
- Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
- Added additional Speed Profile to further customize driving style preference.
- Improved handling for static and dynamic gates.
- Improved offsetting for road debris (e.g. tires, tree branches, boxes).
- Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
- Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
- Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!
Upcoming Improvements:
- Overall smoothness and sentience
- Parking spot selection and parking quality