A recently published Tesla patent application titled “System and Method for Handling Errors in a Vehicle Neural Network Processor” describes a way to safely handle errors encountered in self-driving software. Rather than risking delays in driving responses that result from input data errors, a signal is sent to ignore the bad information and continue processing as usual. Tesla’s application was published May 23, 2019 as International Publication No. WO/2019/099941.
During self-driving operations in Tesla’s program, streams of real-time input data are received and used to both train its neural network and initiate a vehicle response to what’s being processed. If something in the data is erroneous or causes a delay in processing, the real-world impact can be disastrous if not handled properly. For example, in a fast-moving vehicle, sensor data can become stale very quickly and cause the self-driving software to respond to an environment that no longer exists. This can result in accidents, property damage, injury, and/or death. The solution presented in Tesla’s patent application attempts to avoid such processing delays altogether and thus improves the safety of the self-driving software overall.
Tesla’s patent application describes the issue as follows:
“Some types of errors may cause neural network processor to hang or time out. That is, one or more portions of neural network processor may freeze or otherwise remain inactive for more than a predetermined amount of time. When a timeout error is encountered, [the] neural network processor may cease to provide output data and/or respond to input data. Other types of errors, such as program errors and/or data errors, may cause the output data generated by [the] neural network processor to be corrupted. When such errors are encountered, [the] neural network processor may continue to provide output data, but the result may be incorrect, meaningless, and/or otherwise unusable.”
- Tesla’s self-driving patent application focuses on handling errors found in its neural network. | Image: Tesla/WIPO
- Tesla’s self-driving patent application focuses on handling errors found in its neural network. | Image: Tesla/WIPO
On its face, the concept behind invention may seem somewhat simple, but likely due to the complexity of neural networks and the field of autonomous driving still being fairly new, Tesla’s solution is unique and innovative. At the international review stage in the patent application process, the Examiner found that Tesla’s patent was novel (new) compared to similar neural network inventions already in the field. Specifically, the following was commented in a Written Opinion:
“Although neural network processors are well known in the art, including in the operation of a vehicle, the addition of having the controller signal that a pending data result is tainted, or incorrect, without terminating the execution of the network, improves upon prior art processors by ensuring the computations of the processor in the vehicle continue while ignoring data determined to be in error, and would require a complexity beyond the ordinary skill, and therefore…meets the…criteria for patentability.”
Concerns about Tesla’s Autopilot software were recently hit by a report published by Consumer Reports wherein the consumer advocacy group concluded that Navigate on Autopilot with autonomic lane changes was more of a liability than an asset. The report stated that, since the feature requires drivers to be one step ahead of the system while it is engaged, it still needs improvement, although the same group found Tesla’s autonomous driving software to be more capable than the competition. However, the report was only focused on how Navigate on Autopilot operates when changing lanes confirmation and warnings are disabled, contrary to scathing headlines which lumped all of Autopilot’s features together with the review.
This most recent patent application shows that Tesla is continuously improving its self-driving features, if that wasn’t already obvious from the company’s frequent over-the-air software releases.
At Tesla’s Autonomy Day for investors last month, CEO Elon Musk declared that the company’s Full Self-Driving computer was objectively the “best in the world”. As more information becomes available, such as presentations on Tesla’s technology and in patent applications, Musk’s confidence expressed in his statement becomes more clear. Full Self-Driving is expected to be feature-complete this year and will become publicly available as regulatory hurdles are overcome.
News
Tesla confirms that it finally solved its 4680 battery’s dry cathode process
The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years.
The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Dry cathode 4680 cells
In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.
The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”
Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.
4680 packs for Model Y
Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla:
“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”
The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.
Elon Musk
Tesla Giga Texas to feature massive Optimus V4 production line
This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.
Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.
Optimus 4 production
In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas.
This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4.
“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated.
How big Optimus could become
During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world.
“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP.
“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated.
Elon Musk
Rumored SpaceX-xAI merger gets apparent confirmation from Elon Musk
The comment follows reports that the rocket maker is weighing a transaction that could further consolidate Musk’s space and AI ventures.
Elon Musk appeared to confirm reports that SpaceX is exploring a potential merger with artificial intelligence startup xAI by responding positively to a post about the reported transaction on X.
Musk’s comment follows reports that the rocket maker is weighing a transaction that could further consolidate his space and AI ventures.
SpaceX xAI merger
As per a recent Reuters report, SpaceX has held discussions about merging with xAI, with the proposed structure potentially involving an exchange of xAI shares for SpaceX stock. The value, structure, and timing of any deal have not been finalized, and no agreement has been signed.
Musk appeared to acknowledge the report in a brief reply on X, responding “Yeah” to a post that described SpaceX as a future “Dyson Swarm company.” The comment references a Dyson Swarm, a sci-fi megastructure concept that consists of a massive network of satellites or structures that orbit a celestial body to harness its energy.
Reuters noted that two entities were formed in Nevada on January 21 to facilitate a potential transaction for the possible SpaceX-xAI merger. The discussions remain ongoing, and a transaction is not yet guaranteed, however.
AI and space infrastructure
A potential merger with xAI would align with Musk’s stated strategy of integrating artificial intelligence development with space-based systems. Musk has previously said that space-based infrastructure could support large-scale computing by leveraging continuous solar energy, an approach he has framed as economically scalable over time.
xAI already has operational ties to Musk’s other companies. The startup develops Grok, a large language model that holds a U.S. Department of Defense contract valued at up to $200 million. AI also plays a central role in SpaceX’s Starlink and Starshield satellite programs, which rely on automation and machine learning for network management and national security applications.
Musk has previously consolidated his businesses through share-based transactions, including Tesla’s acquisition of SolarCity in 2016 and xAI’s acquisition of X last year. Bloomberg has also claimed that Musk is considering a merger between SpaceX and Tesla in the future.

