During the Q2 2021 Earnings Call Update Letter released in late July, Tesla revealed that the Semi program would be delayed once again due to battery cell constraints and supply chain bottlenecks. However, developments regarding the Semi’s charging system still move forward, and one document from Ideanomics subsidiary WAVE proposes an extreme fast-charging system that would provide speeds of 500 kW and 1 MW. It would be void of cables, wires, and implanted directly into the roadway, providing power without having to plug in.
WAVE, an acronym for Wireless Advanced Vehicle Electrification, is owned by NASDAQ-listed company Ideanomics. WAVE develops high-power inductive charging solutions, but not for things like cell phones. They develop these charging systems for medium and heavy-duty vehicles, and the Tesla Semi may be one of the first vehicles to utilize the technology.
In the document, WAVE shares that extreme fast-charging systems are a sub-category of the company’s primary 250 kW business. However, it aims to develop 500 kW and 1 MW-capable wireless electric vehicle chargers for large-scale commercial vehicles using a primary coil embedded in the roadway and a receiving coil within the truck. Power would then be transferred using magnetic fields that are created by using a resonant inverter to create high-frequency AC currents to energize a charging coil. The energy from the coil underground would transmit energy to the truck, providing a charge without plugging in.
The Tesla Semi visits Yandell Truckaway. (Photo: Arash Malek)
WAVE specifically mentions the strengths of the system and how it could benefit the Tesla Semi, in particular. The document states:
“The current state-of-the-art drayage truck charging features primarily conductive chargers. The recently announced Tesla Semi concept design has the largest advertised range of 500 miles with a target 80% charge in 30 minutes. The battery pack is estimated to be at least 800 kWh (likely much higher to cover full load and all conditions) and must have a target charge rate of at approximately 1.5 MW. The system under development via the US DOE contract of charging an electric drayage truck at extreme fast-charging power levels will be the fastest charger by a significant margin.”
$IDEX The WAVE W-XFC is mentioned here with the advanced battery pack for the Tesla Semi as an example
-This very high power wireless charging system, COUPLED w/ AN ADVANCED BATTERY PACK that supports high rate charging will allow MD/HD trucks/buses to be charged in 20-30 minutes pic.twitter.com/yPtuD0VhyM— Konahuanui Investments (@konahuanui) August 6, 2021
This will be possible through WAVE’s recently-developed wireless charging system that can transfer up to 250 kW for bus charging at a distance of 250 millimeters, or 10 inches. “This is achieved by using a scalable modular approach. For this project, WAVE will increase the power level to 500 kW.”
WAVE can achieve the increased power level by increasing the power rating and density of the electronics and the coil design. Uses for the idea can be applied to “a number of urban applications,” and WAVE indicates that it won’t be a technology exclusive to Class 8 vehicles.
Tesla has been developing the Megacharger for the Semi for several years and has achieved some impressive specs ahead of the vehicle’s release. In 2017 at the Semi’s unveiling event, CEO Elon Musk said that Tesla would install a global network of solar-powered Megachargers that could provide 400 miles of range in just 30 minutes. An output of over 1 MW would make this possible, but to avoid potential dangers due to high energy output, Tesla filed for liquid-cooled charging connectors. Tesla uses something similar in its V3 Superchargers.
Yesterday, WAVE was awarded a contract to develop wireless inductive charging solutions by government organization Sourcewell.
Don’t hesitate to contact us with tips! Email us at tips@teslarati.com, or you can email me directly at joey@teslarati.com.
News
Tesla Robotaxi ride-hailing without a Safety Monitor proves to be difficult
Tesla Robotaxi ride-hailing without a Safety Monitor is proving to be a difficult task, according to some riders who made the journey to Austin to attempt to ride in one of its vehicles that has zero supervision.
Last week, Tesla officially removed Safety Monitors from some — not all — of its Robotaxi vehicles in Austin, Texas, answering skeptics who said the vehicles still needed supervision to operate safely and efficiently.
BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor
Tesla aimed to remove Safety Monitors before the end of 2025, and it did, but only to company employees. It made the move last week to open the rides to the public, just a couple of weeks late to its original goal, but the accomplishment was impressive, nonetheless.
However, the small number of Robotaxis that are operating without Safety Monitors has proven difficult to hail for a ride. David Moss, who has gained notoriety recently as the person who has traveled over 10,000 miles in his Tesla on Full Self-Driving v14 without any interventions, made it to Austin last week.
He has tried to get a ride in a Safety Monitor-less Robotaxi for the better part of four days, and after 38 attempts, he still has yet to grab one:
Wow just wow!
It’s 8:30PM, 29° out ice storm hailing & Tesla Robotaxi service has turned back on!
Waymo is offline & vast majority of humans are home in the storm
Ride 38 was still supervised but by far most impressive yet pic.twitter.com/1aUnJkcYm8
— David Moss (@DavidMoss) January 25, 2026
Tesla said last week that it was rolling out a controlled test of the Safety Monitor-less Robotaxis. Ashok Elluswamy, who heads the AI program at Tesla, confirmed that the company was “starting with a few unsupervised vehicles mixed in with the broader Robotaxi fleet with Safety Monitors,” and that “the ratio will increase over time.”
This is a good strategy that prioritizes safety and keeps the company’s controlled rollout at the forefront of the Robotaxi rollout.
However, it will be interesting to see how quickly the company can scale these completely monitor-less rides. It has proven to be extremely difficult to get one, but that is understandable considering only a handful of the cars in the entire Austin fleet are operating with no supervision within the vehicle.
News
Tesla gives its biggest hint that Full Self-Driving in Europe is imminent
Tesla has given its biggest hint that Full Self-Driving in Europe is imminent, as a new feature seems to show that the company is preparing for frequent border crossings.
Tesla owner and influencer BLKMDL3, also known as Zack, recently took his Tesla to the border of California and Mexico at Tijuana, and at the international crossing, Full Self-Driving showed an interesting message: “Upcoming country border — FSD (Supervised) will become unavailable.”
FSD now shows a new message when approaching an international border crossing.
Stayed engaged the whole way as we crossed the border and worked great in Mexico! pic.twitter.com/bDzyLnyq0g
— Zack (@BLKMDL3) January 26, 2026
Due to regulatory approvals, once a Tesla operating on Full Self-Driving enters a new country, it is required to comply with the laws and regulations that are applicable to that territory. Even if legal, it seems Tesla will shut off FSD temporarily, confirming it is in a location where operation is approved.
This is something that will be extremely important in Europe, as crossing borders there is like crossing states in the U.S.; it’s pretty frequent compared to life in America, Canada, and Mexico.
Tesla has been working to get FSD approved in Europe for several years, and it has been getting close to being able to offer it to owners on the continent. However, it is still working through a lot of the red tape that is necessary for European regulators to approve use of the system on their continent.
This feature seems to be one that would be extremely useful in Europe, considering the fact that crossing borders into other countries is much more frequent than here in the U.S., and would cater to an area where approvals would differ.
Tesla has been testing FSD in Spain, France, England, and other European countries, and plans to continue expanding this effort. European owners have been fighting for a very long time to utilize the functionality, but the red tape has been the biggest bottleneck in the process.
Tesla Europe builds momentum with expanding FSD demos and regional launches
Tesla operates Full Self-Driving in the United States, China, Canada, Mexico, Puerto Rico, Australia, New Zealand, and South Korea.
Elon Musk
SpaceX Starship V3 gets launch date update from Elon Musk
The first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.
Elon Musk has announced that SpaceX’s next Starship launch, Flight 12, is expected in about six weeks. This suggests that the first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.
In a post on X, Elon Musk stated that the next Starship launch is in six weeks. He accompanied his announcement with a photo that seemed to have been taken when Starship’s upper stage was just about to separate from the Super Heavy Booster. Musk did not state whether SpaceX will attempt to catch the Super Heavy Booster during the upcoming flight.
The upcoming flight will mark the debut of Starship V3. The upgraded design includes the new Raptor V3 engine, which is expected to have nearly twice the thrust of the original Raptor 1, at a fraction of the cost and with significantly reduced weight. The Starship V3 platform is also expected to be optimized for manufacturability.
The Starship V3 Flight 12 launch timeline comes as SpaceX pursues an aggressive development cadence for the fully reusable launch system. Previous iterations of Starship have racked up a mixed but notable string of test flights, including multiple integrated flight tests in 2025.
Interestingly enough, SpaceX has teased an aggressive timeframe for Starship V3’s first flight. Way back in late November, SpaceX noted on X that it will be aiming to launch Starship V3’s maiden flight in the first quarter of 2026. This was despite setbacks like a structural anomaly on the first V3 booster during ground testing.
“Starship’s twelfth flight test remains targeted for the first quarter of 2026,” the company wrote in its post on X.