News
Blue Origin continues SpaceX-competitive rocket R&D with hot-fire engine tests
Prospective SpaceX-competitor Blue Origin is continuing research and development work in earnest in an effort to push its first orbital-class rocket, known as New Glenn, closer to the massive vehicle’s launch debut.
In early August, the company shared a video showing a small segment of a long-duration hot-fire test of the rocket engine that will power New Glenn’s second stage, the upper segment of the rocket tasked with placing payloads (typically satellites) into their final orbit(s).
Recent footage of BE-3U demonstration engine hot fire. Two BE-3Us will power upper stage of #NewGlenn & deliver our customers to orbit. We’ve completed over 700 seconds of test time & confirmed performance assumptions used for final BE-3U expander cycle design #GradatimFerociter pic.twitter.com/ygJlgHkyE1
— Blue Origin (@blueorigin) August 10, 2018
Blue Origin recently announced an intriguing decision to change the upper stage engine its New Glenn rocket will use, moving from a vacuum version of the booster’s massive BE-4 engine (BE-4U) to two updated and modified BE-3 engines, the same propulsion system that powers the company’s much smaller New Shepard suborbital rocket. Rated for roughly 110,000 pounds of thrust (compared to Merlin 1D’s ~190,000 lbf thrust), a duo of the vacuum-optimized engines would be expected to produce roughly the same amount of thrust as SpaceX’s Merlin Vacuum (MVac) upper stage engine.
Before BE-3U took its place, Blue’s original plan was to fly New Glenn as a full-up liquid methane and liquid oxygen (methalox0rocket) on both first and second stages, simplifying the vehicle’s fluid systems and the launch pad’s own ground systems. By replacing BE-4U with BE-3U, the company is instead choosing to make New Glenn’s first stage methalox while the second stage will use liquid hydrogen and oxygen (hydrolox).
- A likely dated mockup of New Glenn at the LC-36 launch pad. (Blue Origin)
- Blue Origin’s aspirational future, the highly reusable BE-4 powered New Glenn rocket. (Blue Origin)
- Blue Origin’s BE-4 engine, the propulsion for New Glenn, seen conducting hot-fire tests in Texas. The engine’s nozzles is a full 6 feet (~1.8m) in diameter. (Blue Origin)
- BE-3U seen testing at Blue Origin’s Texas facilities in August 2018. (Blue Origin)
Blue Origin certainly does have more experience flying hydrolox rockets thanks to its suborbital New Shepard program, and BE-3 is also a mature engine as a result. However, the decision is still difficult to parse. Critically, the company chose to significantly change a fundamental aspect of the rocket engine, moving from a combustion tap-off cycle to an expander cycle, where “cycle” refers to the mechanisms used to pump fuel and oxidizer into a rocket engine’s combustion chamber.
Changing cycles is a fairly dramatic revision and consequently diminishes the value of what might be called “flight-heritage” hardware, or rocket components that have been extensively tested and proven during actual flight operations. Noting one of the main points Blue Origin itself has made in the past and on its own website, it should come as no surprise that New Glenn’s launch debut is believed to have slipped from 2020 into 2021 or even 2022, originally reported by Reuters earlier this month.
“With extensive testing and use on New Shepard and the BE-3, the BE-3U will be one of the best-understood rocket engines before it ever launches into space [on New Glenn].” – Blue Origin
New Glenn’s debut delays will likely push Blue Origin’s first lunar Blue Moon landings beyond the original 2023 launch target. Regardless, a considerable amount of work thus lays before Blue Origin before they will be ready to seriously compete with the likes of SpaceX, Arianespace, and ULA on the global launch market.
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!
News
Tesla’s global fleet surpasses 9 million vehicles worldwide
The update was posted by Tesla China, which competes in the world’s most competitive electric vehicle market.
Tesla’s global fleet has now exceeded 9 million vehicles, a major milestone for the electric vehicle maker.
The update was posted by Tesla China, which competes in the world’s most competitive electric vehicle market.
Tesla’s global fleet crosses 9 million vehicles
The milestone was highlighted in a graphic shared by Tesla China, which thanked the over nine million Tesla owners worldwide for their support over the years. To celebrate the milestone, Tesla China announced several incentives for select owners, from Model Y L test drives to Tesla Bot Premium Gift Sets to Supercharging perks.
The milestone comes 16 years after the company started delivering its first vehicle, the original Tesla Roadster, as observed by members of the Tesla community. The first production Roadster was delivered to Elon Musk, who was serving as chairman at the time.
Reaching a global fleet of more than 9 million vehicles reflects the cumulative impact of Tesla’s growth over the past decade, particularly following the introduction of high-volume models such as the Model 3 and Model Y. The Model 3 and Model Y have allowed Tesla to transform from a niche automaker into one of the world’s largest producers of electric cars.
Strong China sales help drive fleet growth
Tesla’s expanding global footprint has been supported by solid performance in China, where the company posted a strong finish to 2025. In December, the Model Y ranked as the country’s top-selling new energy vehicle, as per sales data compiled by Chinese auto industry aggregator Yiche.
The Model Y led China’s NEV rankings with approximately 65,874 units sold during the month, outperforming a field dominated by domestic manufacturers such as BYD, SAIC-GM-Wuling, and Xiaomi. Tesla’s Model 3 also delivered an impressive result, ranking eighth overall with just under 28,000 units sold, ahead of numerous locally produced competitors despite its premium pricing.
Tesla China’s broader performance in December was equally notable. The company sold 97,171 vehicles wholesale during the month, based on data from the China Passenger Car Association. The result marked Tesla China’s second-highest monthly total on record, trailing only November 2022’s peak of 100,291 units.
News
Tesla launches new affordable Model Y configuration in the U.S.
Tesla has launched another new affordable Model Y configuration in the United States, now adding a fifth version of the all-electric crossover to its lineup, diversifying the car’s options and giving consumers more choices at the time of purchase.
Tesla launched the Model Y All-Wheel-Drive on Monday night, pricing it at $41,990. It features 294 miles of range, a 125 MPH top speed, and a 0-60 MPH acceleration rate of 4.6 seconds.
The vehicle is the second most-affordable configuration of the Model Y, only eclipsing the Model Y Rear-Wheel-Drive, which is priced at $39,990.
The move to expand the Model Y lineup comes just a week after CEO Elon Musk confirmed the company would remove the Model S and Model X from production, making way for manufacturing of the Optimus robot at the company’s Fremont, California, factory.
🚨 Tesla has just launched the Model Y All-Wheel-Drive, a new configuration, in the U.S. for $41,990
It has 294 miles of range, a 4.6s 0-60 MPH acceleration rate, and a 125 MPH top speed pic.twitter.com/cyd81m26vB
— TESLARATI (@Teslarati) February 3, 2026
The Model Y All-Wheel-Drive fits the bill of the “Standard” offerings of the vehicle that Tesla launched last year. It is void of many of the more luxurious features, which are available in the “Premium” trim levels, available in Rear-Wheel-Drive, All-Wheel-Drive, and Performance.
The differences between the Standard and Premium configurations can be found in the video below:
@teslarati There are some BIG differences between the Tesla Model Y Standard and Tesla Model Y Premium #tesla #teslamodely ♬ Sia – Xeptemper
With five configurations now available in the Model Y, it certainly seems as if Tesla is attempting to get the vehicle available in more options than ever before.
With the Model S and Model X being removed from production due to their irrelevance to the future and Tesla’s focus on autonomy, diversifying the Model Y portfolio seems to align with the idea that the company is okay with making more variations of its most popular car.
Tesla Model Y Standard: first impressions from a Premium owner
Removing the Model S and Model X and replacing them with a new Model Y configuration is not exactly what fans have been wanting; many have been wondering what Tesla will do to replace the need for a bigger SUV for large families.
Nevertheless, Tesla’s relentless attitude toward solving autonomy and its preparation to launch a self-driving ride-hailing service seem to fit the bill for this move. Soon, it will be the Model 3, Model Y, and Cybercab playing the main parts of this autonomous future. The Cybertruck will be sticking around for other things, like local hauling.
Elon Musk
SpaceX officially acquires xAI, merging rockets with AI expertise
SpaceX has officially acquired xAI, merging rockets with AI expertise in what is the first move to bring Elon Musk’s companies under one umbrella.
On February 2, SpaceX officially announced the acquisition of xAI, uniting two powerhouse companies under a single entity, creating what the space exploration company called in a blog post “one of the most ambitious, vertically integrated innovation engines on (and off) Earth.”
🚨 BREAKING: Elon Musk has posted a new blog on SpaceX’s website confirming the acquisition of xAI pic.twitter.com/TFgeHGMpXc
— TESLARATI (@Teslarati) February 2, 2026
The deal will integrate xAI’s advanced AI capabilities, including the Grok chatbot and massive training infrastructure, with SpaceX’s rocket technology, Starlink satellite network, and ambitious space exploration goals.
The acquisition comes at a pivotal moment: xAI is valued at around $230 billion as of late 2025, and has been racing to scale AI compute amid global competition from companies like OpenAI, Google, and Meta. Meanwhile, SpaceX, which was recently valued at $800 billion, is facing escalating costs for its multiplanetary ambitions.
By combining forces, the merged entity gains a unified approach to tackle one of AI’s biggest bottlenecks: the enormous energy and infrastructure demands of next-gen models.
Musk wrote in a blog post on SpaceX’s website that:
“In the long term, space-based AI is obviously the only way to scale. To harness even a millionth of our Sun’s energy would require over a million times more energy than our civilization currently uses! The only logical solution therefore is to transport these resource-intensive efforts to a location with vast power and space. I mean, space is called “space” for a reason.”
Musk details the need for orbital data centers, stating that his estimate is that “within 2 to 3 years, the lowest cost way to generate AI compute will be in space.
This cost-efficiency alone will enable innovative companies to forge ahead in training their AI models and processing data at unprecedented speeds and scales, accelerating breakthroughs in our understanding of physics and invention of technologies to benefit humanity.”
SpaceX recently filed for approval from the FCC to launch up to one million solar-powered satellites configured as high-bandwidth, optically linked compute platforms.
These facilities would harness near-constant sunlight with minimal maintenance, delivering what the company projects as transformative efficiency.
Musk has long argued that space offers the ultimate solution for power-hungry AI projects. But that’s not all the merger will take care of.
Additionally, it positions the company to fund broader goals. Revenue from the Starlink expansion, potential SpaceX IPO, and AI-driven applications could accelerate the development of lunar bases, as Musk believes multiplanetary life will be crucial to saving civilization.
Critics question the feasibility of massive constellations amid orbital debris concerns and regulatory hurdles. Yet, proponents see it as a bold step toward a multiplanetary computing infrastructure that extends human civilization beyond Earth.



