News
LaunchPad: Falcon Heavy ready to go for commercial launch debut
This is a free preview of LaunchPad, one of Teslarati’s member-only launch briefing newsletters. Before each SpaceX launch, I’ll give you an inside look of what to expect and share amazing photos and on-the-ground details after the launch. Become a member today receive all of Teslarati’s newsletters.
SpaceX launch technicians and engineers have officially completed the integration and static fire testing of the second Falcon Heavy rocket ever, nearing the end of preflight preparations for the vehicle’s critical commercial launch debut.
Carrying the commercial communications satellite Arabsat 6A, the rocket will be tasked with placing the massive spacecraft into a high-energy geostationary orbit. After a combination of hurdles and conflicting priorities conspired to delay Arabsat 6A’s launch from mid-2018 to February, March, and eventually, April of 2019, both the spacecraft and rocket are nearly ready to go. If all goes as planned, SpaceX will also complete the first successful launch and near-simultaneous landings of three independent rocket boosters, preparing two of the three boosters for reuse on a launch that could happen as early as June 2019.
When: 6:35 pm EDT, 22:35 UTC (click for your time), April 10th
What: Arabsat 6A, communications satellite, ~6000 kg (13,200 lb)
Where: Pad 39A, Kennedy Space Center, Florida
Boosters: B1052.1, B1053.1, B1055.1
Recovery: Yes; drone ship Of Course I Still Love You (OCISLY) & LZ-1/2
Weather: 80% GO, 4/10

Falcon 9 Block 5, meet Falcon Heavy
- With this Falcon Heavy, SpaceX has effectively built – once again – a center stage that is nearly its own rocket, much like the tortured development of the first vehicle’s center stage can be blamed for a lot of its years of delays.
- Based on Falcon 9 V1.2’s Block 3 iteration, Falcon Heavy Flight 1’s center core was effectively outdated a year before it launched, and Falcon 9 Block 5 debuted just three months after its first and last launch.
- Combined with the center core’s untimely demise when it crashed into the Atlantic after running out of engine starter, the now 14 months separating Flight 1 and Flight 2 of Falcon Heavy can be explained by the rocket’s delayed path to the launch site.
- By the time the first Falcon Heavy’s main components were all present in at the launch site, SpaceX was already building Block 5 rockets and was as few as three months away from completely transitioning its Hawthorne, CA factory to Block 5.
- Due to the extensive changes in production incorporated into Block 5, this was effectively a no-turning-back deal where the cost of transitioning back was simply a non-starter.
- By the time Falcon Heavy had launched, and its center core had smashed itself to pieces on the Atlantic Ocean surface, it was far too late to begin producing a replacement copy. One step further, the process of ramping up Block 5 production had been slowed significantly by the drastic changes made across the board, taking SpaceX to the edge of production-related launch delays over the course of 2018.
- Put simply, building two side boosters and a relatively boutique Falcon Heavy center core – all three of which would be inextricably tied together for the foreseeable future – was not a practical option when three separate Falcon 9 Block 5 boosters could instead support 6-12+ launches over a period of six or so months.

(Hopefully) the first of many
- In the nominal event that SpaceX’s second Falcon Heavy launch is an unqualified success, it’s entirely possible that the doors to new markets could be opened as the world and its many spacefaring customers begin to contemplate the existence of an affordable super-heavy-lift launch vehicle – the first of its kind.
- On the outside, Falcon Heavy can begin to look like a bit of a boondoggle from a business perspective. It will have probably cost no less than $750M-$1B to develop, including the Block 5 modifications needed, and likely brought in less than $100M in gross revenue. It’s a black hole that SpaceX currently dumps huge volumes of cash into, in other words.
- However, this sort of observation is far too pessimistic and gives SpaceX far too little credit after some additional careful analysis. As of today, SpaceX has six public launch contracts for FH, two of which are from the USAF/NRO and likely valued around $130M-$150M.
- Purely commercial contracts for Falcon Heavy will probably be closer to $90M-100M, more than competitive with rockets like Atlas 5, Delta IV Heavy, Ariane 5, and other future vehicles like ULA’s Vulcan.
- Within ~12 months, the USAF will likely have awarded 10-16 additional launch contracts to some combo of Falcon 9 and Falcon Heavy as part of the latest EELV (now NSSL) acquisition phase. Assuming SpaceX is one of the two providers chosen, Falcon Heavy could receive numerous additional contracts for heavy military satellites.
- Additionally, NASA is now seriously considering Falcon Heavy for the launch of flagship missions like Europa Clipper and (maybe, maybe not) even Orion missions to the Moon.
- Falcon Heavy could also be the only vehicle in the world with the performance needed for a number of other missions that could arise from the Lunar Gateway, including launching actual segments of the space station and launching deep space cargo missions resupply said Gateway.
- Only ULA’s Delta IV Heavy can marginally compete with Falcon Heavy’s performance, but it typically costs no less than $300M per launch, a 2-3X surcharge over SpaceX’s offering. Due to the utter and complete lack of competition from both a price and performance perspective, SpaceX could essentially have the heavy life market cornered for something like 48-60+ months.
- Offering a unique product with potentially high demand and no real alternative, SpaceX would not be out of place to raise its profit margins significantly, helping to rapidly pay back the capital investment it put into Falcon Heavy’s extended development.
- Regardless, the future of Falcon Heavy has every right to be even more thrilling and diverse than the already impressive Falcon 9.



You can watch Falcon Heavy’s commercial launch debut live here on April 10th at 6:35 pm EDT (22:35 UTC). We’ll see you after the launch at LandingZone with exclusive photos and on-the-ground details of Falcon Heavy’s center core recovery.
Elon Musk
Elon Musk and Tesla AI Director share insights after empty driver seat Robotaxi rides
The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.
Tesla CEO Elon Musk and AI Director Ashok Elluswamy celebrated Christmas Eve by sharing personal experiences with Robotaxi vehicles that had no safety monitor or occupant in the driver’s seat. Musk described the system’s “perfect driving” around Austin, while Elluswamy posted video from the back seat, calling it “an amazing experience.”
The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.
Elon and Ashok’s firsthand Robotaxi insights
Prior to Musk and the Tesla AI Director’s posts, sightings of unmanned Teslas navigating public roads were widely shared on social media. One such vehicle was spotted in Austin, Texas, which Elon Musk acknowleged by stating that “Testing is underway with no occupants in the car.”
Based on his Christmas Eve post, Musk seemed to have tested an unmanned Tesla himself. “A Tesla with no safety monitor in the car and me sitting in the passenger seat took me all around Austin on Sunday with perfect driving,” Musk wrote in his post.
Elluswamy responded with a 2-minute video showing himself in the rear of an unmanned Tesla. The video featured the vehicle’s empty front seats, as well as its smooth handling through real-world traffic. He captioned his video with the words, “It’s an amazing experience!”
Towards Unsupervised operations
During an xAI Hackathon earlier this month, Elon Musk mentioned that Tesla owed be removing Safety Monitors from its Robotaxis in Austin in just three weeks. “Unsupervised is pretty much solved at this point. So there will be Tesla Robotaxis operating in Austin with no one in them. Not even anyone in the passenger seat in about three weeks,” he said. Musk echoed similar estimates at the 2025 Annual Shareholder Meeting and the Q3 2025 earnings call.
Considering the insights that were posted Musk and Elluswamy, it does appear that Tesla is working hard towards operating its Robotaxis with no safety monitors. This is quite impressive considering that the service was launched just earlier this year.
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.


