Connect with us

Space

Mars exploration in focus as Europe prepares ExoMars Rover for search of life

ESA's ExoMars rover will roam the rusty Martian surface in search for signs of life. Credit: ESA

Published

on

2020 may be the year humanity takes its biggest step toward finding evidence of life beyond Earth. NASA and the European Space Agency (ESA) are each working on its own rover that will roam Mars’s surface in search of life.

The ExoMars mission is Europe’s first Mars rover. Named after British DNA pioneer Rosalind Franklin, the golf cart-sized robot is approximately one-third the size of NASA’s planned Mars 2020 rover and will look for signs that life might have existed on Mars.

Both rovers will act as remote scientists, beaming back a wealth of data and images to Earth.

Mars 2020 will collect Martian samples for eventual return to Earth sometime in the future, while ExoMars will use its unique drill to burrow below the surface. Here, the rover will find pristine samples that were shielded from the harsh radiation bombarding Mars’s surface. Scientists are hopeful that below the surface is where we could find our first evidence of life. 

A Rover’s Purpose

Mars is a hostile place. Because its atmosphere is much thinner than Earth’s, life as we know it would have a difficult time surviving on the surface.

Advertisement

Billions of years ago, the surface of Mars was probably quite similar to that of Earth. However, that changed when Mars lost its magnetic field, which stripped its atmosphere, and exposed its surface to intense radiation. All of which made survival above ground incredibly challenging.

Historically, Mars missions have searched for signs of life on the planet’s surface, usually at places where there are signs of ancient water. That’s because this is typically where we find life on Earth.

But since we haven’t found life on the planet’s surface yet, mission scientists propose we need to dig deeper. There may be some microbial Martians underground.

The ExoMars rover (and accompanying lander) are a follow-on to ESA’s ExoMars Orbiter mission which reached Mars in 2016. That initial mission consisted of two parts: the Trace Gas Orbiter (TGO) and the Schiaparelli landing demonstrator. 

Landing on Mars

TGO made it to Mars and is doing great, however, Schiaparelli didn’t fare so well — the lander crashed during its descent to the Martian surface. 

Advertisement

Landing a probe on Mars is not easy. To safely navigate the tenuous Martian atmosphere requires a combination of sophisticated landing gear, including heat shields, retrorockets, and even giant, inflatable airbags. 

Despite the crash landing, Schiaparelli achieved its goal as a technology demonstrator. It also showed that the team needed to revamp the landing system before the rover launches. But, with less than a year till liftoff, the rover team is struggling with an established piece of landing architecture: parachutes

In order to slow the rover down, the mission requires multiple parachutes — one 15 meters (49 feet) in diameter and one 35 meters (115 feet).  

As the rover begins its descent, atmospheric drag will slow the craft from around 21 000 km/h (13,048 mph) to 1700 km/h (1,056 mph). That’s when the first parachute will deploy. About 20 seconds later, at about 400 km/h (248 mph), the second chute will deploy. Lastly, the braking engines will kick in about 1 km (or half a mile) above the ground, enabling the rover land safely on the Martian surface.

The entire sequence takes just six minutes.

Advertisement

Parachute Troubles

During high-altitude testing conducted earlier this year, the craft’s parachutes ripped as soon as they deployed. ESA engineers made several adjustments, including reinforcing both the parachutes and their storage bags with Teflon to make them deploy easier. The chutes are still tearing.  

Now the agency is turning to NASA for help. ESA engineers are teaming up with the folks at the Jet Propulsion Laboratory, to put the enhanced parachutes through months of rigorous testing. 

In the meantime, the rover team is putting its hardware through a round of thermal testing. For 18 days it will be subjected to the same harsh temperature conditions experienced on Mars. 

The parachutes are expected to finish testing sometime in April 2020; they will then be integrated with the rover and shipped to the launch site in Kazakhstan. However, if any part of the mission misses its deadline, the entire project could be sidelined until the next favorable Mars launch window — in 2022.

Advertisement

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

News

SpaceX set to launch Axiom’s mission for diabetes research on the ISS

Axiom’s Ax-4 will test CGMs & insulin stability in microgravity—potentially reshaping diabetes care for Earth & future astronauts.

Published

on

(Credit: SpaceX)

Axiom Space’s Ax-4 mission is set to launch on a SpaceX Falcon 9 rocket. Ax-4 will advance diabetes research in microgravity, marking a milestone for astronaut health.

Axiom Space’s fourth crewed mission is scheduled to launch with SpaceX on May 29 from NASA’s Kennedy Space Center in Florida. The Ax-4 mission will carry a diverse crew and a record-breaking scientific payload to the International Space Station (ISS).

The Ax-4 crew is led by Axiom’s Peggy Whitson and includes Shubhanshu Shukla from India, Sławosz Uznański from the European Space Agency, and Tibor Kapu from Hungary. The mission represents firsts for India, Hungary, and Poland, with Uznański being Poland’s first astronaut in over 40 years.

Ax-4 will conduct nearly 60 science investigations from 31 countries during its two-week ISS stay. A key focus is the “Suite Ride” initiative, a collaboration with Burjeel Holdings to study diabetes management in microgravity.

“The effort marks a significant milestone in the long-term goal of supporting future astronauts with insulin-dependent diabetes (IDDM), a condition historically deemed disqualifying for spaceflight,” Axiom noted. The mission will test Continuous Glucose Monitors (CGMs) and insulin stability to assess their performance in space.

Advertisement

Axiom explained that testing the behavior of CGMs and insulin delivery technologies in microgravity and observing circadian rhythm disruption could help diabetes experts understand how CGMs and insulin pens can improve diabetes monitoring and care in remote or underserved areas on Earth. The research could benefit diabetes management in isolated regions like oil rigs or rural areas.

The mission’s findings on insulin exposure and CGM performance could pave the way for astronauts with diabetes to safely participate in spaceflight. As Axiom and SpaceX push boundaries, Ax-4’s diabetes research underscores the potential for space-based innovations to transform healthcare on Earth and beyond.

Continue Reading

Elon Musk

EU considers SES to augment Starlink services

The EU considers funding SES to support Starlink. With MEO satellites already serving NATO, SES could be key in Europe’s space autonomy push.

Published

on

EU-ses-starlink-augment
(Credit: SES)

European satellite company SES is negotiating with the European Union (EU) and other governments to complement SpaceX’s Starlink, as Europe seeks home-grown space-based communication solutions. The talks aim to bolster regional resilience amid growing concerns over reliance on foreign providers.

In March, the European Commission contacted SES and France’s Eutelsat to assess their potential role if American-based Starlink access for Ukraine was disrupted. The European Commission proposed funding EU-based satellite operators to support Kyiv. Ukraine is considering alternatives to Starlink over concerns about Elon Musk’s reliability.

Arthur De Liedekerke of Rasmussen Global warned, “Elon Musk is, in fact, the guardian of Ukraine’s connectivity on the battlefield. And that’s a strategic vulnerability.” However, SpaceX’s Starlink constellation is leagues ahead of any competition in the EU.

“Now the discussions are much more strategic in nature. They’re much more mid-term, long-term. And what we’re seeing is all of the European governments are serious about increasing their defense spending. There are alternatives, not to completely replace Starlink, that’s not possible, but to augment and complement Starlink,” SES CEO Adel Al-Saleh told Reuters.

Advertisement

SES operates about 70 satellites, including over 20 medium Earth orbit (MEO) units at 8,000 km. The company provides high-speed internet for government, military, and underserved areas. It plans to expand its MEO fleet to 100, enhancing secure communications for NATO and the Pentagon.

“The most significant demand (for us) is European nations investing in space, much more than what they did before,” Al-Saleh said.

Competition from Starlink, Amazon’s Kuiper, and China’s SpaceSail, with their extensive low-Earth orbit constellations, underscores Europe’s push for independence.

“It is not right to say they just want to avoid Starlink or the Chinese. They want to avoid being dependent on one or two providers. They want to have flexibility,” Al-Saleh noted.

SES’s discussions reflect Europe’s strategic shift toward diversified satellite networks, balancing reliance on Starlink with regional capabilities. As governments ramp up defense spending, SES aims to play a pivotal role in complementing global providers, ensuring robust connectivity for military and civilian needs across the continent.

Advertisement
Continue Reading

News

Amazon launches Kuiper satellites; Can it rival Starlink?

With 27 satellites in orbit, Amazon kicks off its $10B plan to deliver global broadband. Can Bezos’ Kuiper take on Musk’s Starlink?

Published

on

amazon-kuiper-satellite-starlink-rival
(Credit: Amazon)

Amazon’s Project Kuiper launched its first 27 satellites on Monday, marking the start of a $10 billion effort that could compete with SpaceX’s Starlink with a global broadband internet network.

Amazon’s Kuiper satellites launched aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Florida. Project Kuiper’s recent launch is the initial step toward deploying Amazon’s 3,236 satellites for low-Earth orbit connectivity. Amazon’s satellite launch was initially set for April 9 but was delayed due to bad weather.  

Now that the Kuiper satellites have been launched, Amazon is expected to publicly confirm contact with the satellites from its mission operations center in Redmond, Washington. The company aims to start offering Kuiper services to customers later this year. Project Kuiper was unveiled in 2019 and targets consumers, businesses, and governments who need reliable internet service, similar to Starlink.

Amazon has a deadline from the U.S. Federal Communications Commission to deploy 1,618 satellites by mid-2026. Analysts suggest the company may require an extension to its Kuiper satellite deployment deadline due to the project’s year-long delay from its planned 2024 start.

United Launch Alliance could conduct up to five more Kuiper missions this year, according to ULA CEO Tory Bruno. Amazon noted in a 2020 FCC filing that Kuiper services could begin with 578 satellites, initially covering northern and southern regions.

Advertisement

Kuiper’s launch pits Amazon against SpaceX’s Starlink and telecom giants like AT&T and T-Mobile, with a focus on underserved rural areas.

“There’s an insatiable demand for the internet,” Amazon Executive Chairman Jeff Bezos told Reuters in January. “There’s room for lots of winners there. I predict Starlink will continue to be successful, and I predict Kuiper will be successful as well.”

Global interest in satellite alternatives is rising. Ukraine is exploring Starlink alternatives with the European Union (EU), driven by concerns over Elon Musk. Germany’s military, Bundeswehr, also plans its own constellation to ensure independent communications. However, like Amazon’s Kuiper Project, EU options lag behind Starlink.

Amazon’s consumer expertise and cloud computing infrastructure give Kuiper a competitive edge despite Starlink’s market lead. As Kuiper ramps up launches, its success could reshape broadband access while challenging SpaceX’s dominance in the satellite internet race.

Advertisement
Continue Reading

Trending