Connect with us

News

Mars’ longtime polar mystery may have finally been solved

Frozen carbon dioxide covers the south pole of Mars. NASA/JPL-Caltech

Published

on

From the surface, Mars may seem like a dry, desert-like world lacking water, but a closer look at the planet’s poles will some striking structures: massive polar ice caps.

At the north pole, the ruddy terrain peeks through the ice, like zebra stripes. In the south pole lurks a mystery, a massive deposit of frozen carbon dioxide and water ice. Scientists have spent decades trying to understand how it formed and how it’s linked to the amount of carbon dioxide (CO2) in the Martian atmosphere.

A pair of scientists in the 1960s came up with a plausible theory, and now, decades later, a new study published in Nature Astronomy may have confirmed their findings.

A look at the layering of water ice (white arrows) and CO2 ice (black arrows) at Mars’ south pole. Credit: NASA/JPL-Caltech

The massive deposit measuring 3,280 feet (1 kilometer) thick contains sheets of water ice and carbon dioxide arranged in alternating layers, like a cake. It’s topped off with a thin frosting of carbon dioxide ice, and scientists noticed something interesting: the massive ice deposit contains as much carbon dioxide as the entire Martian atmosphere.

Peter Buhler, a planetary scientist at NASA’s Jet Propulsion Laboratory led the new study. The team used computer simulations to map out the ice, and they were surprised at how closely their models matched with what Robert B. Leighton and Bruce Murray predicted decades ago.

“Usually, when you run a model, you don’t expect the results to match so closely to what you observe,” he said in a statement. “But the thickness of the layers, as determined by the model, matches beautifully with radar measurements from orbiting satellites.”

Advertisement
-->
Mars has a decent supply of water, it’s just locked up in ice deposits like the one seen here at the Korolev crater. Credit: ESA/DLR/FU Berlin

The ice cap puzzled researchers because according to science, it shouldn’t exist. That’s because water ice is more thermally stable and darker than carbon dioxide ice, which means that it should destabilize when layered between water ice.

However, the new model explains this behavior. Buhler and his team say there are three reasons why the frozen carbon dioxide exists. First, Mars wobbles as it orbits the sun, and when it does, the slight changing of the tilt alters the amount of sunlight that hits the ice. Second, each type of ice reflects the sun a bit differently. And lastly, because of the exposure to sunlight, the carbon dioxide sublimates–meaning it goes directly from a solid to a gas–which alters the atmospheric pressure.

As Mars wobbles, the amount of sunlight reaching the ice varies, causing the ice to form and then later sublimate. When the carbon dioxide ice was forming, water ice would’ve been trapped with it. But when that ice sublimated, the more stable water ice would have remained behind, forming the layers we now see at the south pole.

https://www.youtube.com/watch?v=8Gj8dr6AsYg

Mars’ climate, just like Earth’s, has changed over millions of years. To that end, not all of the carbon dioxide ice was lost; some were left behind to build up the varying layers we see—a process that has altered the red planet’s atmospheric pressure. 

This is what Leighton and Murray hypothesized back decades ago, and this is what Buhler’s new model shows.

Advertisement
-->

“Our determination of the history of Mars’s large pressure swings is fundamental to understanding the evolution of Mars’s climate, including the history of liquid water stability and habitability near Mars’s surface,” Buhler said in a statement.

By understanding what processes formed the south polar ice cap, scientists can better understand more of what happened in Mars’ history.

I write about space, science, and future tech.

Advertisement
Comments

News

Tesla is not sparing any expense in ensuring the Cybercab is safe

Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility.

Published

on

Credit: @JoeTegtmeyer/X

The Tesla Cybercab could very well be the safest taxi on the road when it is released and deployed for public use. This was, at least, hinted at by the intensive safety tests that Tesla seems to be putting the autonomous two-seater through at its Giga Texas crash test facility. 

Intensive crash tests

As per recent images from longtime Giga Texas watcher and drone operator Joe Tegtmeyer, Tesla seems to be very busy crash testing Cybercab units. Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility just before the holidays. 

Tegtmeyer’s aerial photos showed the prototypes clustered outside the factory’s testing building. Some uncovered Cybercabs showed notable damage and one even had its airbags engaged. With Cybercab production expected to start in about 130 days, it appears that Tesla is very busy ensuring that its autonomous two-seater ends up becoming the safest taxi on public roads. 

Prioritizing safety

With no human driver controls, the Cybercab demands exceptional active and passive safety systems to protect occupants in any scenario. Considering Tesla’s reputation, it is then understandable that the company seems to be sparing no expense in ensuring that the Cybercab is as safe as possible.

Tesla’s focus on safety was recently highlighted when the Cybertruck achieved a Top Safety Pick+ rating from the Insurance Institute for Highway Safety (IIHS). This was a notable victory for the Cybertruck as critics have long claimed that the vehicle will be one of, if not the, most unsafe truck on the road due to its appearance. The vehicle’s Top Safety Pick+ rating, if any, simply proved that Tesla never neglects to make its cars as safe as possible, and that definitely includes the Cybercab.

Advertisement
-->
Continue Reading

Elon Musk

Tesla’s Elon Musk gives timeframe for FSD’s release in UAE

Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year. 

Published

on

Tesla CEO Elon Musk stated on Monday that Full Self-Driving (Supervised) could launch in the United Arab Emirates (UAE) as soon as January 2026. 

Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year. 

Musk’s estimate

In a post on X, UAE-based political analyst Ahmed Sharif Al Amiri asked Musk when FSD would arrive in the country, quoting an earlier post where the CEO encouraged users to try out FSD for themselves. Musk responded directly to the analyst’s inquiry. 

“Hopefully, next month,” Musk wrote. The exchange attracted a lot of attention, with numerous X users sharing their excitement at the idea of FSD being brought to a new country. FSD (Supervised), after all, would likely allow hands-off highway driving, urban navigation, and parking under driver oversight in traffic-heavy cities such as Dubai and Abu Dhabi.

Musk’s comments about FSD’s arrival in the UAE were posted following his visit to the Middle Eastern country. Over the weekend, images were shared online of Musk meeting with UAE Defense Minister, Deputy Prime Minister, and Dubai Crown Prince HH Sheikh Hamdan bin Mohammed. Musk also posted a supportive message about the country, posting “UAE rocks!” on X.

Advertisement
-->

FSD recognition

FSD has been getting quite a lot of support from foreign media outlets. FSD (Supervised) earned high marks from Germany’s largest car magazine, Auto Bild, during a test in Berlin’s challenging urban environment. The demonstration highlighted the system’s ability to handle dense traffic, construction sites, pedestrian crossings, and narrow streets with smooth, confident decision-making.

Journalist Robin Hornig was particularly struck by FSD’s superior perception and tireless attention, stating: “Tesla FSD Supervised sees more than I do. It doesn’t get distracted and never gets tired. I like to think I’m a good driver, but I can’t match this system’s all-around vision. It’s at its best when both work together: my experience and the Tesla’s constant attention.” Only one intervention was needed when the system misread a route, showcasing its maturity while relying on vision-only sensors and over-the-air learning.

Continue Reading

News

Tesla quietly flexes FSD’s reliability amid Waymo blackout in San Francisco

“Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post.

Published

on

Tesla highlighted its Full Self-Driving (Supervised) system’s robustness this week by sharing dashcam footage of a vehicle in FSD navigating pitch-black San Francisco streets during the city’s widespread power outage. 

While Waymo’s robotaxis stalled and caused traffic jams, Tesla’s vision-only approach kept operating seamlessly without remote intervention. Elon Musk amplified the clip, highlighting the contrast between the two systems.

Tesla FSD handles total darkness

The @Tesla_AI account posted a video from a Model Y operating on FSD during San Francisco’s blackout. As could be seen in the video, streetlights, traffic signals, and surrounding illumination were completely out, but the vehicle drove confidently and cautiously, just like a proficient human driver.

Musk reposted the clip, adding context to reports of Waymo vehicles struggling in the same conditions. “Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post. 

Musk and the Tesla AI team’s posts highlight the idea that FSD operates a lot like any experienced human driver. Since the system does not rely on a variety of sensors and a complicated symphony of factors, vehicles could technically navigate challenging circumstances as they emerge. This definitely seemed to be the case in San Francisco.  

Advertisement
-->

Waymo’s blackout struggles

Waymo faced scrutiny after multiple self-driving Jaguar I-PACE taxis stopped functioning during the blackout, blocking lanes, causing traffic jams, and requiring manual retrieval. Videos shared during the power outage showed fleets of Waymo vehicles just stopping in the middle of the road, seemingly confused about what to do when the lights go out. 

In a comment, Waymo stated that its vehicles treat nonfunctional signals as four-way stops, but “the sheer scale of the outage led to instances where vehicles remained stationary longer than usual to confirm the state of the affected intersections. This contributed to traffic friction during the height of the congestion.”

A company spokesperson also shared some thoughts about the incidents. “Yesterday’s power outage was a widespread event that caused gridlock across San Francisco, with non-functioning traffic signals and transit disruptions. While the failure of the utility infrastructure was significant, we are committed to ensuring our technology adjusts to traffic flow during such events,” the Waymo spokesperson stated, adding that it is “focused on rapidly integrating the lessons learned from this event, and are committed to earning and maintaining the trust of the communities we serve every day.”

Continue Reading