News
Mars has competition from Venus after new study shows signs of life
NASA and SpaceX are simultaneously planning their trips to Mars and the Moon, but a recent study published in Nature Astronomy has brought a different planet into the running for a new near-term exploration mission: Venus.
A team of scientists led by Dr. Jane Graeves of Cardiff University in the UK just announced the discovery of phosphine in the clouds of Venus. This rare molecule is made either industrially or as a byproduct of microbes that live in oxygen-free environments, meaning there’s serious evidence that life may exist on our sister planet.
“This was an experiment made out of pure curiosity, really,” Dr. Graeves detailed to the Royal Astronomical Society. “I thought we’d just be able to rule out extreme scenarios, like the clouds being stuffed full of organisms. When we got the first hints of phosphine in Venus’ spectrum, it was a shock!”
With NASA’s 2020 Mars Rover Perseverance on its way to do some astrobiological science on our red neighbor, this new finding on Venus looks to now have some high-level advocates for prioritized exploration.
“Life on Venus? The discovery of phosphine, a byproduct of anaerobic biology, is the most significant development yet in building the case for life off Earth,” NASA Administrator Jim Bridenstine tweeted about the news shortly after its publication. “About 10 years ago NASA discovered microbial life at 120,000ft in Earth’s upper atmosphere. It’s time to prioritize Venus.”
https://twitter.com/JimBridenstine/status/1305598182571810822
Planetary scientist Paul Byrne of North Carolina State University echoed this same sentiment in a quote published by The New York Times. “If this planet is active and is producing phosphine, and there is something that’s making it in the Venus atmosphere, then by God almighty, forget this Mars nonsense,” Byrne opined. “We need a lander, an orbiter, we need a program.”
Similar to thinking about Mars’ ancient past being filled with more Earth-like components such as water bodies (or perhaps not), Venus is thought to have been the home to lakes, rivers, and oceans before a runaway greenhouse effect made it into the hellish landscape it is today. This thinking has partly lead to speculation about the possibility of microbes migrating or developing in the clouds of the planet as ‘aerial’ life where temperatures are much more Earth-like, albeit very acidic. “Finding phosphine on Venus was an unexpected bonus! The discovery raises many questions, such as how any organisms could survive. On Earth, some microbes can cope with up to about 5% of acid in their environment – but the clouds of Venus are almost entirely made of acid,” commented team member Dr. Clara Sousa Silva of MIT.

For planetary science enthusiasts, of course, the idea of looking for life or even a new home for humans in the clouds of Venus isn’t new. Astrobiologist David Grinspoon, for one, has been advocating for the planet’s cause for quite some time. “Venus, this planet where I’ve been proposing for decades that there could be a biosphere in the clouds,” he exclaimed in a recent video chat about the discovery. “I mean, Venus is a place we do not associate with extraterrestrial life… It’s so hot, and so dry, the pressure’s so huge…we think life is gonna be anywhere but Venus. But interestingly if you go 30 miles up into the clouds, it’s rather comfortable in the sense that it’s sort of like room temperature [and pressure] in the room you’re in right now.”
The discovery of phosphine on Venus is also exciting for exoplanet hunting endeavors, i.e., looking for signs of life on planets outside our solar system. “It’s very exciting because phosphine is a gas that should not exist in an atmosphere like Venus’,” Grinspoon explained. “It stands out as an anomaly… Not only that, phosphine has been previously suggested as a very good biosignature that we might find on an exoplanet – a gas that’s made by life. It’s not easy to make in non-biological ways.”
A renewed call for Venusian exploration is already ready to be answered by a few scientists and groups, one notable example being startup launch provider Rocket Lab. As a rocket company focused on dedicated missions for small payloads, Rocket Lab stands as a ready and willing partner for any organization looking to gather more data from Venus directly. In fact, CEO Peter Beck already has plans in the works for the planet most symbolically synonymous with romance.
“I’m madly in love with Venus,” Beck said on August 5th this year during a live streamed company update. “I’m working very hard to put together a private mission to go to Venus in 2023… At the very least, I think it’s a needle-mover even for just a private mission to try and go do something interplanetary. That sends a message to the rest of the world that, ‘Hey, look — we can do these things privately.’”
Another notable mission that’s relevant to Beck and Rocket Lab’s goals for small payload missions to interplanetary destinations was the Mars Cube One companions of NASA’s InSight lander launched in 2018. After traveling the the red planet with the lander, the twin cube satellites were able to send back data and a photo of Mars to Earth. This proved that tiny affordable spacecraft could be used for some serious deep-space science. Perhaps one of the biggest discoveries in our solar system of late could be followed up by an itty bitty mission (respectively)?
You can watch Dr. Jane Greaves, explain the discovery on Venus in detail:
Elon Musk
Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)
Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.
At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.
The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.
Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.
And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.
SpaceX’s trajectory has been just as dramatic.
The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.
Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.
And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.
In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.
The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
Energy
Tesla launches Cybertruck vehicle-to-grid program in Texas
The initiative was announced by the official Tesla Energy account on social media platform X.
Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills.
The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.
Texas’ Cybertruck V2G program
In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.
During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.
The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.
Powershare Grid Support
To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.
Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.
News
Samsung nears Tesla AI chip ramp with early approval at TX factory
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung clears early operations hurdle
As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.
City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.
Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips.
Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.
Samsung’s U.S. expansion
Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.
Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.
Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.
One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips.