Connect with us

Space

NASA’s newest space observatory could sniff exoplanet atmospheres for signs of life

Artist rendition of what it might look like on the surface of Trappist-1f, a planet in the Trappist-1 system. Credit: NASA/JPL-Caltech

Published

on

Over the course of our existence, humanity has struggled to definitively answer the question: “Are we alone?”

Is Earth the only planet in the vast cosmic sea that contains life? As our technology becomes more advanced, we get closer and closer to the answer.

Our solar system contains a multitude of worlds, planetary bodies ranging from ice planets to gas giants with magnificent rings to rocky, terrestrial worlds like our own. But what lies out beyond our stellar neighborhood?

It’s only been in the last few decades that scientists have detected planets orbiting other stars. We call them exoplanets. Since that initial discovery, researchers have trained their telescopes on the cosmos in search of new and different worlds.

Their efforts were not in vain, as thousands of exoplanets have been detected. Now, scientists are starting to shift their focus to the individual planets and learning as much as they can about them. Do they contain life? What are they made of? What kind of atmosphere do they have?

Advertisement

These are the types of questions we hope to answer about the alien worlds that fill our universe.

One element essential to life on Earth is oxygen. Its presence is what scientists refer to as a biosignature. (These are the types of things NASA’s next Mars rover will look for.) A recent paper published in Nature Astronomy details a new technique that scientists are hoping will help them detect the presence of oxygen in exoplanet atmospheres.

Like methane, oxygen is a biosignature but its presence does not guarantee we will find life. There are plenty of non-biological processes that produce oxygen (as well as methane). However, if other biosignatures are detected in addition to oxygen, the chances of life increase significantly.

NASA’s Curiosity rover detected a methane cycle on Mars that varies with the seasons. However, its orbital counterparts — European spacecraft TGO and Mars Express — have not. The science team is working to identify what is causing the methane spikes as well as why it seems to disappear as it rises through the atmosphere. 

Advertisement
Possible sources and sinks of methane on Mars. Credit: NASA

“Oxygen is one of the most exciting molecules to detect because of its link with life, but we don’t know if life is the only cause of oxygen in an atmosphere,” Edward Schwieterman, an astrobiologist at UC Riverside and co-author on the study, said in a statement. “This technique will allow us to find oxygen in planets both living and dead.”

The new method was developed by a team led by Thomas Fauchez, a planetary scientist at NASA’s Goddard Space Flight Center. It is derived from the behavior of oxygen molecules in Earth’s atmosphere.

When oxygen molecules collide, they produce a signala very subtle dip in infrared radiation. Unfortunately, that signal is so faint that current observatories cannot detect it in distant planets. But that will soon change. NASA’s latest and greatest telescope, the James Webb Space Telescope (JWST) will come online sometime in the next few years. Fauchez’s team has shown that JWST, which will observe the universe in the infrared, should have what it takes to spot it.

“Before our work, oxygen at similar levels as on Earth was thought to be undetectable with Webb,” said Fauchez in a statement. “This oxygen signal is known since the early 1980s from Earth’s atmospheric studies but has never been studied for exoplanet research.”

In the meantime, NASA’s Mars 2020 rover will launch to the red planet in July. Once it’s on Mars, it will study Jezero Crater, the site of an ancient river delta and scan the region for signs of life (like oxygen, methane, and other biosignatures). The rover will also bag up bits of Mars to be returned to Earth at a later date.

Advertisement

I write about space, science, and future tech.

Comments

News

SpaceX rescue mission for stranded ISS astronauts nears end — Here’s when they’ll return home

Published

on

Credit: SpaceX

SpaceX is ready to bring home Butch Wilmore and Suni Williams, the two astronauts that have been stranded on the International Space Station (ISS) for nine months.

Last week, SpaceX launched its Crew-10 mission, which would dock onto the ISS late Saturday night and be the two astronauts’ ride home. Now, the end is in sight, and it appears both NASA and SpaceX are planning to have the two home this week, perhaps earlier than expected.

SpaceX readies to rescue astronauts from International Space Station

The agency and the company have announced that Dragon will autonomously undock from the ISS on Tuesday at 1:05 a.m. ET and should re-enter Earth’s atmosphere and splashdown off the Florida coast about 17 hours later.

SpaceX said:

Advertisement

“SpaceX and NASA are targeting Tuesday, March 18 at 1:05 a.m. ET for Dragon to autonomously undock from the International Space Station. After performing a series of departure burns to move away from the space station, Dragon will conduct multiple orbit-lowering maneuvers, jettison the trunk, and re-enter Earth’s atmosphere for splashdown off the coast of Florida approximately 17 hours later the same day.”

Crew-9 astronaut Nick Hague will be alongside Williams and Wilmore on the flight home, along with Roscosmos cosmonaut Aleksandr Gorbunov. Hague and Gorbunov have been in space since Saturday, September 28.

SpaceX was tasked with bringing Wilmore and Williams home after the Boeing Starliner that sent them there was determined not to be suitable for their return.

A report from the New York Post in late August said that Boeing employees routinely made fun of SpaceX workers, only for the company to bail them out:

SpaceX bails out Boeing and employees are reportedly ‘humiliated’

Advertisement

Crew-10 will bring the astronauts home, ending an extensive and unscheduled stay in space.

Continue Reading

News

SpaceX readies to rescue astronauts from International Space Station

Published

on

Credit: SpaceX

SpaceX is readying to launch the Crew-10 mission this evening, which will bring home U.S. astronauts Butch Wilmore and Suni Williams, who have been stuck on the International Space Station for nine months.

SpaceX is working alongside NASA to bring the two astronauts home, and all systems and weather conditions are looking ideal to launch the mission this evening from the Kennedy Space Center in Florida.

Boeing was originally tasked with the rescue mission.

Advertisement

The company sent a Starliner aircraft to the ISS in late September in an effort to bring Williams and Wilmore home. However, malfunctioning thrusters and other issues on the Starliner aircraft prevented NASA from giving the green light to the astronauts to board and come home.

SpaceX was then tasked with bringing the two home, and it appears they will be on their way shortly.

The launch was intended to occur on Wednesday, but a last-minute problem with the rocket’s ground systems forced SpaceX and NASA to delay until at least Friday. Things are looking more ideal for a launch this evening.

The launch is targeted for 7:03 p.m. ET, but another backup opportunity is available tomorrow, March 15, at 6:41 p.m.

SpaceX writes about the Dragon spacecraft that will be used for the mission:

Advertisement

“The Dragon spacecraft supporting this mission previously flew NASA’s Crew-3Crew-5, and Crew-7 missions to and from the space station. This will be the second flight for the first stage booster supporting this mission, which previously launched the SES 03b mPOWER-e mission. Following stage separation, Falcon 9’s first stage will land on Landing Zone 1 (LZ-1) at Cape Canaveral Space Force Station.”

The mission will not only aim to bring the two astronauts who have been stranded for nine months home, but it will also conduct new research to prepare for human exploration beyond low-Earth orbit.

If Crew-10 launches at the planned time this evening, it will dock to the ISS at 11:30 p.m. ET on Saturday night.

Continue Reading

News

SpaceX explains reasoning for Starship 7 upper stage loss

Published

on

Credit: SpaceX

SpaceX is set to launch its eighth test flight of the Starship rocket this Friday. Ahead of the most recent test in what could be the most revolutionary spaceflight program since NASA’s Apollo, SpaceX is clearing the air about what went wrong during its previous test flight, which resulted in the loss of the second stage during its ascension.

On January 16, SpaceX successfully launched Starship while also completing its second successful catch of the lower-stage booster.

However, the flight did not go as smoothly as initially anticipated, as the company lost Starship’s upper stage roughly eight minutes and twenty seconds into flight.

Now, the company is clarifying what happened that led to the demise of the upper stage, which SpaceX has identified with the recognition of “flashes” that occurred after vehicle separation.

SpaceX completes second catch of lower stage, but loses Starship

Advertisement

SpaceX says that a flash was observed roughly two minutes into its burn after vehicle separation. The flash, along with sensors that was a pressure rise in the attic, indicated a leak:

“Approximately two minutes into its burn, a flash was observed in the aft section of the vehicle near one of the Raptor vacuum engines. This aft section, commonly referred to as the attic, is an unpressurized area between the bottom of the liquid oxygen tank and the aft heatshield. Sensors in the attic detected a pressure rise indicative of a leak after the flash was seen.”

This was not the only flash that was observed. Two minutes after the first, another flash was seen, but this one was followed by sustained fires in the attic. These fires caused Starship’s engines to perform a controlled shutdown:

“These eventually caused all but one of Starship’s engines to execute controlled shut down sequences and ultimately led to a loss of communication with the ship. Telemetry from the vehicle was last received just over eight minutes and 20 seconds into flight.”

SpaceX clarified that Starship was destroyed and communication with the ship was lost before it was able to initiate any destruct rules for its Autonomous Flight Safety System. The company said this was “fully healthy when communication was lost.”

Advertisement

It went on to say that the “most probable root cause” of the loss was likely due to an environment not seen during testing:

“The most probable root cause for the loss of ship was identified as a harmonic response several times stronger in flight than had been seen during testing, which led to increased stress on hardware in the propulsion system. The subsequent propellant leaks exceeded the venting capability of the ship’s attic area and resulted in sustained fires.”

Nevertheless, Starship will launch for the eighth time soon, with CEO Elon Musk noting that the most likely date will be Friday. This could be the second of potentially 25 Starship launches planned for 2025.

Need accessories for your Tesla? Check out the Teslarati Marketplace:

Please email me with questions and comments at joey@teslarati.com. I’d love to chat! You can also reach me on Twitter @KlenderJoey, or if you have news tips, you can email us at tips@teslarati.com.

Advertisement
Continue Reading

Trending