Connect with us
ford mustang mach e ford mustang mach e

News

Prestone testing new coolant chemistries to increase BEV efficiency

Credit: Ford Motor Company

Published

on

Automotive chemical manufacturer Prestone is currently developing a low-conductivity electric vehicle (EV) coolant that scientists hope can increase EV efficiency.

While ethylene glycol is used in both gas vehicles and EVs, including Teslas, Prestone has increased its research and development budget for learning about less conductive cooling fluids over the past year, as detailed in a report from Automotive News on Friday. Prestone EV Director Tom Corrigan says that that won’t be the case in the future, as the company seeks to develop its own.

“Essentially, EVs are borrowing the internal combustion engine fluid,” Corrigan said. “We are going to see a shift in that in the next one to two years.”

The company has been testing its low-conductivity EV coolants in Ford Mustang Mach-E vehicles at its tech center in Danbury, Connecticut, in recent months. While initial offerings are roughly two years away and will still include ethylene glycol bases, Corrigan also says that petroleum-based dielectric coolants could replace the chemistry in future years.

Advertisement
-->

Coolant types may also be dependent on battery chemistries, with lithium-iron phosphate (LFP), solid-state, and nickel manganese cobalt batteries likely all requiring different coolant makeups. Tesla writes on its website that its cooling systems currently use a phosphate and nitrate-free ethylene glycol-based coolant.

Ethylene glycol can ionize over time when it interacts with metals, plastics, and other necessary engine materials. As the coolant gains electrons, the overall efficiency of a battery-electric vehicle (BEV) is decreased. In addition, the coolant chemistry is expected to shift because of safety, as a BEV-friendly replacement for the corrosion inhibitors used in ICE coolants.

“Those ionize in the fluid and carry an electrical charge. If you have an issue where high-conductivity coolant contacts high-voltage electronics or the battery, it can lead to fire,” Corrigan explains. “So what we are working on is low-conductivity coolant.”

Scientists evaluate the electrical conductivity of coolants using a unit called microsiemens, which measures the conductivity per centimeter. In gas cars, experts expect to see between 3,000 and 5,000 microsiemens per centimeter, considered highly conductive, though it doesn’t negatively interact with gas vehicles in the same way it does for BEVs.

Instead, BEV makers are asking Prestone to develop a coolant with just 100 microsiemens per centimeter, while other fuel cell vehicles may require coolant conductivity levels of just 0.5 to 1.5 microsiemens, according to Corrigan.

Advertisement
-->

“Every bit of increased conductivity is a loss of efficiency in the fuel cell. You’ve got to make the fluid very pure,” he notes.

Along with adding to the company’s R&D budget, Prestone added an additional five scientists and engineers in the department developing coolants for BEVs and fuel cells.

“We see where the future is going with EV coolants, and we want to be ready when the manufacturers are ready,” Corrigan says.

RELATED:

StoreDot closes in on U.S. market entry with launch of R&D campus in California

Advertisement
-->

What are your thoughts? Let me know at zach@teslarati.com, find me on X at @zacharyvisconti, or send us tips at tips@teslarati.com.

Zach is a renewable energy reporter who has been covering electric vehicles since 2020. He grew up in Fremont, California, and he currently lives in Colorado. His work has appeared in the Chicago Tribune, KRON4 San Francisco, FOX31 Denver, InsideEVs, CleanTechnica, and many other publications. When he isn't covering Tesla or other EV companies, you can find him writing and performing music, drinking a good cup of coffee, or hanging out with his cats, Banks and Freddie. Reach out at zach@teslarati.com, find him on X at @zacharyvisconti, or send us tips at tips@teslarati.com.

Advertisement
Comments

Elon Musk

SpaceX issues statement on Starship V3 Booster 18 anomaly

The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas. 

Published

on

Credit: SpaceX/X

SpaceX has issued an initial statement about Starship Booster 18’s anomaly early Friday. The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas. 

SpaceX’s initial comment

As per SpaceX in a post on its official account on social media platform X, Booster 18 was undergoing gas system pressure tests when the anomaly happened. Despite the nature of the incident, the company emphasized that no propellant was loaded, no engines were installed, and personnel were kept at a safe distance from the booster, resulting in zero injuries.

“Booster 18 suffered an anomaly during gas system pressure testing that we were conducting in advance of structural proof testing. No propellant was on the vehicle, and engines were not yet installed. The teams need time to investigate before we are confident of the cause. No one was injured as we maintain a safe distance for personnel during this type of testing. The site remains clear and we are working plans to safely reenter the site,” SpaceX wrote in its post on X. 

Incident and aftermath

Livestream footage from LabPadre showed Booster 18’s lower half crumpling around the liquid oxygen tank area at approximately 4:04 a.m. CT. Subsequent images posted by on-site observers revealed extensive deformation across the booster’s lower structure. Needless to say, spaceflight observers have noted that Booster 18 would likely be a complete loss due to its anomaly.

Booster 18 had rolled out only a day earlier and was one of the first vehicles in the Starship V3 program. The V3 series incorporates structural reinforcements and reliability upgrades intended to prepare Starship for rapid-reuse testing and eventual tower-catch operations. Elon Musk has been optimistic about Starship V3, previously noting on X that the spacecraft might be able to complete initial missions to Mars.

Advertisement
-->
Continue Reading

Investor's Corner

Tesla analyst maintains $500 PT, says FSD drives better than humans now

The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.

Published

on

Credit: Tesla

Tesla (NASDAQ:TSLA) received fresh support from Piper Sandler this week after analysts toured the Fremont Factory and tested the company’s latest Full Self-Driving software. The firm reaffirmed its $500 price target, stating that FSD V14 delivered a notably smooth robotaxi demonstration and may already perform at levels comparable to, if not better than, average human drivers. 

The team also met with Tesla leaders for more than an hour to discuss autonomy, chip development, and upcoming deployment plans.

Analysts highlight autonomy progress

During more than 75 minutes of focused discussions, analysts reportedly focused on FSD v14’s updates. Piper Sandler’s team pointed to meaningful strides in perception, object handling, and overall ride smoothness during the robotaxi demo.

The visit also included discussions on updates to Tesla’s in-house chip initiatives, its Optimus program, and the growth of the company’s battery storage business. Analysts noted that Tesla continues refining cost structures and capital expenditure expectations, which are key elements in future margin recovery, as noted in a Yahoo Finance report. 

Analyst Alexander Potter noted that “we think FSD is a truly impressive product that is (probably) already better at driving than the average American.” This conclusion was strengthened by what he described as a “flawless robotaxi ride to the hotel.”

Advertisement
-->

Street targets diverge on TSLA

While Piper Sandler stands by its $500 target, it is not the highest estimate on the Street. Wedbush, for one, has a $600 per share price target for TSLA stock.

Other institutions have also weighed in on TSLA stock as of late. HSBC reiterated a Reduce rating with a $131 target, citing a gap between earnings fundamentals and the company’s market value. By contrast, TD Cowen maintained a Buy rating and a $509 target, pointing to strong autonomous driving demonstrations in Austin and the pace of software-driven improvements. 

Stifel analysts also lifted their price target for Tesla to $508 per share over the company’s ongoing robotaxi and FSD programs. 

Continue Reading

Elon Musk

SpaceX Starship Version 3 booster crumples in early testing

Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.

Published

on

Credit: SpaceX/X

SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory. 

Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired. 

Booster test failure

SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.

Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.

Tight deadlines

SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.

Advertisement
-->

While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.

Continue Reading