Rivian has unveiled the R2, its next-generation platform. The all-electric crossover is expected to bring Rivian into the next chapter of its growth as an automaker. It is also expected to allow Rivian to scale its operations, making it a mainstream automaker.
Rivian CEO RJ Scaringe presented the R2 to an enthusiastic audience. Following is a quick overview of the Rivian R2.
Exterior
The Rivian R2 looks very similar to the Rivian R1S. Just like the flagship SUV, it features a large frunk that could fit some luggage and gear. At the rear, the R2 includes some features that provide an open-air experience, such as quarter windows that pop out and a rear glass window that drops down. The drop-down rear glass of the R2 also makes loading items to the all-electric crossover’s trunk much easier.
Introducing R2.
⚡️0-60 under 3 seconds.
⚡️Up to 300+ miles of range.
⚡️Room for five and all your gear.
Reserve yours now: https://t.co/1H408AWcA4
Deliveries expected to begin in the first half of 2026. The features, options and digital displays shown are subject to… pic.twitter.com/xC5ZjyaoCL— Rivian (@Rivian) March 7, 2024
Size-wise, Scaringe noted that the Rivian R2 is about 400 mm (15.7 inches) shorter than the R1S. A slide used in the presentation noted that the R2 has a length of 4715 mm (185.6 inches), a height of 1700 mm (66 inches), and a wheelbase of 2935 mm (115.5 inches). This should make the all-electric crossover easier to maneuver and drive. Its compact size should also help it fit in tight spaces and garages.
Interior
The Rivian executive noted that despite its more compact dimensions compared to the R1S, the R2 is designed to feel spacious inside. “It feels so inviting,” Scaringe said. Like the R1T and R1S that came before it, the R2 is also a vehicle that’s designed to be taken outdoors. It was thus no surprise to see that the R2’s second and first-row seats are capable of folding flat for an optimal car camping experience.
Take a 360-degree tour of R2. pic.twitter.com/euyJkScRYq— Rivian (@Rivian) March 7, 2024
Much to the amusement of the audience, Scaringe noted that the R2 features two gloveboxes and Rivian’s trademark in-door flashlight. Steering wheel controls are dominated by two large scroll wheels, which is not unlike what’s used in the previous generation Tesla Model 3. Scaringe also noted that the R2 features 11 cameras and a suite of five radar sensors, four in the corners and one long range radar in front. The cameras and radar should help the Rivian R2’s planned self-driving features.
Specs
Scaringe did not share much about the Rivian R2’s specs, though he did state that the vehicle would be equipped with a battery pack comprised of 4695 cylindrical cells, which are larger than the 21 mm cells used in the R1 platform. It should also be noted that the Rivian R2 will feature a structural bombardment pack, which means that the top of the battery will be the floor of the vehicle itself.
Every seat in R2 can lay flat for the ultimate car camping experience. pic.twitter.com/hDH3c17y5N— Rivian (@Rivian) March 7, 2024
The Rivian R2 will be offered in three versions: a Single Motor Rear Wheel Drive (RWD) variant, a Dual Motor All Wheel Drive (AWD) variant, and a Tri-Motor variant with two motors on the back and one motor at the front. Scaringe noted that all three R2 variants are expected to achieve over 300 miles of range. The Tri-Motor R2 is expected to achieve a 0-60 mph time of less than 3 seconds.
Price and Release Date
The Rivian R2 is expected to start at $45,000. While Scaringe did not discuss details on the vehicle’s pricing, this amount is likely true for the entry-level RWD version. Still, $45,000 is quite competitive, as the Tesla Model Y, a best-selling all-electric crossover, starts at $43,990 before options today.
Feel the breeze from all directions with the R2’s 360-degree open air experience, including powered rear glass. pic.twitter.com/GMKOEg5HpW— Rivian (@Rivian) March 7, 2024
Scaringe noted that the Rivian R2 is expected to start deliveries in the second half of 2026. The vehicle will initially be built at Rivian’s Normal, IL facility.
Watch Rivian’s R2 unveiling in the video below.
Don’t hesitate to contact us with news tips. Just send a message to simon@teslarati.com to give us a heads up.
News
Tesla Cybercab spotted with interesting charging solution, stimulating discussion
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.
The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.
But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:
🚨 Tesla Cybercab charging port is in the rear of the vehicle!
Here’s a great look at plugging it in!!
— TESLARATI (@Teslarati) January 29, 2026
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.
However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.
Wireless for Operation, Wired for Downtime
It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.
The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.
Tesla wireless charging patent revealed ahead of Robotaxi unveiling event
However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.
In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.
Induction Charging Challenges
Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.
While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.
Production Timing and Potential Challenges
With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.
It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.
In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.
News
Tesla confirms that it finally solved its 4680 battery’s dry cathode process
The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years.
The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Dry cathode 4680 cells
In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.
The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”
Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.
4680 packs for Model Y
Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla:
“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”
The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.
Elon Musk
Tesla Giga Texas to feature massive Optimus V4 production line
This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.
Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.
Optimus 4 production
In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas.
This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4.
“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated.
How big Optimus could become
During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world.
“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP.
“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated.