Connect with us

News

DeepSpace: Rocket Lab bucks the saying that ‘space is hard’ with 4th Electron success

Published

on

Rocket Lab's Electron rocket lifts off for the fifth time, March 29th. (Rocket Lab)

This is a free preview of DeepSpace, Teslarati’s new member-only weekly newsletter. Each week, I’ll be taking a deep-dive into the most exciting developments in commercial space, from satellites and rockets to everything in between. Sign up for Teslarati’s newsletters here to receive a preview of our membership program.

Rocket Lab continues to buck the adage that “space is hard” with its small but increasingly reliable Electron rocket. After a slight range hardware malfunction caused a launch abort just shy of orbit during Electron’s inaugural May 2017 launch attempt, Rocket Lab fixed the issue and returned to flight, successfully completing Electron’s first orbital launch in January 2018. On November 11th, 2018, the rocket completed its first truly commercial launch, placing seven various satellite into Low Earth Orbit (LEO), rapidly followed by Electron’s fourth successful launch on December 16th, barely one month later.

On March 29th, Rocket Lab completed yet another milestone launch for Electron, successfully placing its heaviest payload – an experimental ~150 kg DARPA spacecraft known as R3D2 – into an accurate orbit. Even relative to SpaceX’s barebones Falcon 1 launch campaign, which attempted five launches – two successfully – over a three year career, Rocket Lab’s Electron has progressed at an extraordinary pace, taking less than two years to complete its fifth launch and achieving its first launch success after just one attempt and eight months of flight operations.

Relentless progress

  • To find a rocket with a comparable record of success less than two years after its first launch attempt, one must jump back more than half a century to the late 1950s and early 1960s, when Russia and the US were putting their industrial mights to the challenge of achieving spacefaring ‘firsts’. Almost all of those original vehicles – including Redstone, Atlas, Delta, Thor, Titan, and even Saturn V – were able to weather early failures and achieve extraordinary launch cadences just 12-24 months after their debuts.
    • None, however, were developed as an entirely commercial rocket with almost exclusively private funds, although ESA’s Ariane 3 and 4 vehicles nearly fit the bill, with exemplary commercial track records and impressive acceleration from debut to high launch cadences.
  • Incredibly, Rocket Lab has brought Electron from paper to its fourth successful launch in ~16 months on what can only be described as a shoestring budget relative to all past efforts, perhaps even Elon Musk and SpaceX.
    • According to public investment records, the small US-based, New Zealand-operated company may have reached orbit for the first time with less than $100M, including ~$70M in equity investment and unspecified development funding from DARPA in the early 2010s.
  • Rocket Lab’s Electron rocket is quite small, measuring 1.2 m (~4 ft) wide, 17 m (56 ft) tall, and 12,500 kg (27,600 lb) at liftoff, anywhere from a quarter to half the size of SpaceX’s Falcon 1, by most measures.
    • Electron is capable of placing 150–225 kg (330–495 lb) into either a 550 km (340 mi) sun synchronous orbit (SSO) or a lower low Earth orbit (LEO).
    • Electron is advertised with a commercial list price of around $6M.
  • Aside from Electron’s industry-defying record of achievement, its R3D2 launch is impressive for another reason: the cost of the payload relative to the cost of launch. For a rocket on its fifth-ever launch, DARPA reportedly spent no less than $25M to fund the development of the experimental R3D2 smallsat, while – as mentioned above – the cost of Electron’s launch could have been as low as ~$6M from ink to orbit.
    • In slightly different terms, Electron has now launched a payload that could be 4-5X more valuable than itself after just three prior launch successes and less than two years after beginning operations.
    • While ~$30M would not be a huge loss for a military agency like DARPA (FY19 budget: $3.4B), DARPA’s trust in Electron demonstrates impressive confidence in not just Electron, but also Rocket Lab’s standards of manufacturing, operations, and mission assurance.
  • Relative to a vehicle like Falcon 9 or Atlas V, Electron’s R3D2 mission would be comparable to launching spacecraft worth ~$250M to $500M after just five launches. Both larger rockets accomplished similar feats, but small launch vehicles are historically known for less than stellar reliability.
Rocket Lab’s New Zealand-based Electron factory, 2018. (Rocket Lab)

Go[ing] forth and conquer[ing]

  • Put simply, Rocket Lab has managed to build what appears to be a shockingly reliable small launch vehicle with a budget that would make Old Space companies whimper, all while offering a potential cadence of dozens of annual launches at per-launch costs as low as $6M.
    • While the cost-per-kg of a $6M Electron launch is still extremely high relative to larger rockets and rideshare opportunities, what Rocket Lab has achieved is nothing short of spectacular in the commercial spaceflight industry.
    • If there ever was an actual ‘space race’ to fill the small launch vehicle void created by the growth of small satellite launch demand, Rocket Lab has won that race beyond the shadow of a doubt. There is still plenty of room for competition and additional cost savings from a customer perspective, but Electron is so early to the party that future competition will remain almost entirely irrelevant for the better part of 2-3 more years.
  • According to CEO Peter Beck, the company’s ambition is to sustain monthly Electron launches in the nine remaining months of 2019. Flight 6 hardware is likely already on its way to Rocket Lab’s Mahia, New Zealand Launch Complex 1 (LC-1).

Mission Updates

  • The second launch of Falcon Heavy – the rocket’s commercial debut – is still scheduled to occur as early as April 7th, but a slip to April 9-10 is now expected. The massive rocket’s static fire – the first for a Block 5 Falcon Heavy – is set to occur as early as Wednesday, April 3rd.
  • After Falcon Heavy, Cargo Dragon’s CRS-17 resupply mission is firmly scheduled for April (April 25th), while the first dedicated Starlink launch is now NET May 2019.
  • In late May, SpaceX could launch Spacecom’s Amos-17 spacecraft, effectively free to the customer as part of a settlement following the tragic Amos-6 Falcon 9 anomaly that destroy the rocket, satellite, and large swaths of the LC-40 pad in September 2016.

Photo of the Week

NASASpaceflight forum contributor BocaChicaGal provided one of the best glimpses yet of SpaceX’s ongoing Starship prototype test campaign, thus far involving 5+ wet dress rehearsals (WDRs) and one or two Raptor preburner ignitions. The first integrated Raptor static fire (and potential hop test) could occur later this week.
(NASASpaceflight – bocachicagal)

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor

Published

on

Tesla has officially launched public Robotaxi rides in Austin, Texas, without a Safety Monitor in the vehicle, marking the first time the company has removed anyone from the vehicle other than the rider.

The Safety Monitor has been present in Tesla Robotaxis in Austin since its launch last June, maintaining safety for passengers and other vehicles, and was placed in the passenger’s seat.

Tesla planned to remove the Safety Monitor at the end of 2025, but it was not quite ready to do so. Now, in January, riders are officially reporting that they are able to hail a ride from a Model Y Robotaxi without anyone in the vehicle:

Advertisement

Tesla started testing this internally late last year and had several employees show that they were riding in the vehicle without anyone else there to intervene in case of an emergency.

Tesla has now expanded that program to the public. It is not active in the entire fleet, but there are a “few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors,” Ashok Elluswamy said:

Advertisement

Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing

The Robotaxi program also operates in the California Bay Area, where the fleet is much larger, but Safety Monitors are placed in the driver’s seat and utilize Full Self-Driving, so it is essentially the same as an Uber driver using a Tesla with FSD.

In Austin, the removal of Safety Monitors marks a substantial achievement for Tesla moving forward. Now that it has enough confidence to remove Safety Monitors from Robotaxis altogether, there are nearly unlimited options for the company in terms of expansion.

While it is hoping to launch the ride-hailing service in more cities across the U.S. this year, this is a much larger development than expansion, at least for now, as it is the first time it is performing driverless rides in Robotaxi anywhere in the world for the public to enjoy.

Advertisement
Continue Reading

Investor's Corner

Tesla Earnings Call: Top 5 questions investors are asking

Published

on

(Credit: Tesla)

Tesla has scheduled its Earnings Call for Q4 and Full Year 2025 for next Wednesday, January 28, at 5:30 p.m. EST, and investors are already preparing to get some answers from executives regarding a wide variety of topics.

The company accepts several questions from retail investors through the platform Say, which then allows shareholders to vote on the best questions.

Tesla does not answer anything regarding future product releases, but they are willing to shed light on current timelines, progress of certain projects, and other plans.

There are five questions that range over a variety of topics, including SpaceX, Full Self-Driving, Robotaxi, and Optimus, which are currently in the lead to be asked and potentially answered by Elon Musk and other Tesla executives:

SpaceX IPO is coming, CEO Elon Musk confirms

Advertisement
  1. You once said: Loyalty deserves loyalty. Will long-term Tesla shareholders still be prioritized if SpaceX does an IPO?
    1. Our Take – With a lot of speculation regarding an incoming SpaceX IPO, Tesla investors, especially long-term ones, should be able to benefit from an early opportunity to purchase shares. This has been discussed endlessly over the past year, and we must be getting close to it.
  2. When is FSD going to be 100% unsupervised?
    1. Our Take – Musk said today that this is essentially a solved problem, and it could be available in the U.S. by the end of this year.
  3. What is the current bottleneck to increase Robotaxi deployment & personal use unsupervised FSD? The safety/performance of the most recent models or people to monitor robots, robotaxis, in-car, or remotely? Or something else?
    1. Our Take – The bottleneck seems to be based on data, which Musk said Tesla needs 10 billion miles of data to achieve unsupervised FSD. Once that happens, regulatory issues will be what hold things up from moving forward.
  4. Regarding Optimus, could you share the current number of units deployed in Tesla factories and actively performing production tasks? What specific roles or operations are they handling, and how has their integration impacted factory efficiency or output?
    1. Our Take – Optimus is going to have a larger role in factories moving forward, and later this year, they will have larger responsibilities.
  5. Can you please tie purchased FSD to our owner accounts vs. locked to the car? This will help us enjoy it in any Tesla we drive/buy and reward us for hanging in so long, some of us since 2017.
    1. Our Take – This is a good one and should get us some additional information on the FSD transfer plans and Subscription-only model that Tesla will adopt soon.

Tesla will have its Earnings Call on Wednesday, January 28.

Continue Reading

Elon Musk

Elon Musk shares incredible detail about Tesla Cybercab efficiency

Published

on

(Credit: Tesla North America | X)

Elon Musk shared an incredible detail about Tesla Cybercab’s potential efficiency, as the company has hinted in the past that it could be one of the most affordable vehicles to operate from a per-mile basis.

ARK Invest released a report recently that shed some light on the potential incremental cost per mile of various Robotaxis that will be available on the market in the coming years.

The Cybercab, which is detailed for the year 2030, has an exceptionally low cost of operation, which is something Tesla revealed when it unveiled the vehicle a year and a half ago at the “We, Robot” event in Los Angeles.

Musk said on numerous occasions that Tesla plans to hit the $0.20 cents per mile mark with the Cybercab, describing a “clear path” to achieving that figure and emphasizing it is the “full considered” cost, which would include energy, maintenance, cleaning, depreciation, and insurance.

ARK’s report showed that the Cybercab would be roughly half the cost of the Waymo 6th Gen Robotaxi in 2030, as that would come in at around $0.40 per mile all in. Cybercab, at scale, would be at $0.20.

Credit: ARK Invest

This would be a dramatic decrease in the cost of operation for Tesla, and the savings would then be passed on to customers who choose to utilize the ride-sharing service for their own transportation needs.

The U.S. average cost of new vehicle ownership is about $0.77 per mile, according to AAA. Meanwhile, Uber and Lyft rideshares often cost between $1 and $4 per mile, while Waymo can cost between $0.60 and $1 or more per mile, according to some estimates.

Tesla’s engineering has been the true driver of these cost efficiencies, and its focus on creating a vehicle that is as cost-effective to operate as possible is truly going to pay off as the vehicle begins to scale. Tesla wants to get the Cybercab to about 5.5-6 miles per kWh, which has been discussed with prototypes.

Additionally, fewer parts due to the umboxed manufacturing process, a lower initial cost, and eliminating the need to pay humans for their labor would also contribute to a cheaper operational cost overall. While aspirational, all of the ingredients for this to be a real goal are there.

Advertisement

It may take some time as Tesla needs to hammer the manufacturing processes, and Musk has said there will be growing pains early. This week, he said regarding the early production efforts:

“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”

Continue Reading