News
DeepSpace: Rocket Lab bucks the saying that ‘space is hard’ with 4th Electron success
This is a free preview of DeepSpace, Teslarati’s new member-only weekly newsletter. Each week, I’ll be taking a deep-dive into the most exciting developments in commercial space, from satellites and rockets to everything in between. Sign up for Teslarati’s newsletters here to receive a preview of our membership program.
Rocket Lab continues to buck the adage that “space is hard” with its small but increasingly reliable Electron rocket. After a slight range hardware malfunction caused a launch abort just shy of orbit during Electron’s inaugural May 2017 launch attempt, Rocket Lab fixed the issue and returned to flight, successfully completing Electron’s first orbital launch in January 2018. On November 11th, 2018, the rocket completed its first truly commercial launch, placing seven various satellite into Low Earth Orbit (LEO), rapidly followed by Electron’s fourth successful launch on December 16th, barely one month later.
On March 29th, Rocket Lab completed yet another milestone launch for Electron, successfully placing its heaviest payload – an experimental ~150 kg DARPA spacecraft known as R3D2 – into an accurate orbit. Even relative to SpaceX’s barebones Falcon 1 launch campaign, which attempted five launches – two successfully – over a three year career, Rocket Lab’s Electron has progressed at an extraordinary pace, taking less than two years to complete its fifth launch and achieving its first launch success after just one attempt and eight months of flight operations.
Relentless progress
- To find a rocket with a comparable record of success less than two years after its first launch attempt, one must jump back more than half a century to the late 1950s and early 1960s, when Russia and the US were putting their industrial mights to the challenge of achieving spacefaring ‘firsts’. Almost all of those original vehicles – including Redstone, Atlas, Delta, Thor, Titan, and even Saturn V – were able to weather early failures and achieve extraordinary launch cadences just 12-24 months after their debuts.
- None, however, were developed as an entirely commercial rocket with almost exclusively private funds, although ESA’s Ariane 3 and 4 vehicles nearly fit the bill, with exemplary commercial track records and impressive acceleration from debut to high launch cadences.
- Incredibly, Rocket Lab has brought Electron from paper to its fourth successful launch in ~16 months on what can only be described as a shoestring budget relative to all past efforts, perhaps even Elon Musk and SpaceX.
- According to public investment records, the small US-based, New Zealand-operated company may have reached orbit for the first time with less than $100M, including ~$70M in equity investment and unspecified development funding from DARPA in the early 2010s.
- Rocket Lab’s Electron rocket is quite small, measuring 1.2 m (~4 ft) wide, 17 m (56 ft) tall, and 12,500 kg (27,600 lb) at liftoff, anywhere from a quarter to half the size of SpaceX’s Falcon 1, by most measures.
- Electron is capable of placing 150–225 kg (330–495 lb) into either a 550 km (340 mi) sun synchronous orbit (SSO) or a lower low Earth orbit (LEO).
- Electron is advertised with a commercial list price of around $6M.
- Aside from Electron’s industry-defying record of achievement, its R3D2 launch is impressive for another reason: the cost of the payload relative to the cost of launch. For a rocket on its fifth-ever launch, DARPA reportedly spent no less than $25M to fund the development of the experimental R3D2 smallsat, while – as mentioned above – the cost of Electron’s launch could have been as low as ~$6M from ink to orbit.
- In slightly different terms, Electron has now launched a payload that could be 4-5X more valuable than itself after just three prior launch successes and less than two years after beginning operations.
- While ~$30M would not be a huge loss for a military agency like DARPA (FY19 budget: $3.4B), DARPA’s trust in Electron demonstrates impressive confidence in not just Electron, but also Rocket Lab’s standards of manufacturing, operations, and mission assurance.
- Relative to a vehicle like Falcon 9 or Atlas V, Electron’s R3D2 mission would be comparable to launching spacecraft worth ~$250M to $500M after just five launches. Both larger rockets accomplished similar feats, but small launch vehicles are historically known for less than stellar reliability.

Go[ing] forth and conquer[ing]
- Put simply, Rocket Lab has managed to build what appears to be a shockingly reliable small launch vehicle with a budget that would make Old Space companies whimper, all while offering a potential cadence of dozens of annual launches at per-launch costs as low as $6M.
- While the cost-per-kg of a $6M Electron launch is still extremely high relative to larger rockets and rideshare opportunities, what Rocket Lab has achieved is nothing short of spectacular in the commercial spaceflight industry.
- If there ever was an actual ‘space race’ to fill the small launch vehicle void created by the growth of small satellite launch demand, Rocket Lab has won that race beyond the shadow of a doubt. There is still plenty of room for competition and additional cost savings from a customer perspective, but Electron is so early to the party that future competition will remain almost entirely irrelevant for the better part of 2-3 more years.
- According to CEO Peter Beck, the company’s ambition is to sustain monthly Electron launches in the nine remaining months of 2019. Flight 6 hardware is likely already on its way to Rocket Lab’s Mahia, New Zealand Launch Complex 1 (LC-1).


Mission Updates
- The second launch of Falcon Heavy – the rocket’s commercial debut – is still scheduled to occur as early as April 7th, but a slip to April 9-10 is now expected. The massive rocket’s static fire – the first for a Block 5 Falcon Heavy – is set to occur as early as Wednesday, April 3rd.
- After Falcon Heavy, Cargo Dragon’s CRS-17 resupply mission is firmly scheduled for April (April 25th), while the first dedicated Starlink launch is now NET May 2019.
- In late May, SpaceX could launch Spacecom’s Amos-17 spacecraft, effectively free to the customer as part of a settlement following the tragic Amos-6 Falcon 9 anomaly that destroy the rocket, satellite, and large swaths of the LC-40 pad in September 2016.
Photo of the Week

Elon Musk
Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)
Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.
At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.
The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.
Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.
And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.
SpaceX’s trajectory has been just as dramatic.
The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.
Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.
And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.
In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.
The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
Energy
Tesla launches Cybertruck vehicle-to-grid program in Texas
The initiative was announced by the official Tesla Energy account on social media platform X.
Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills.
The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.
Texas’ Cybertruck V2G program
In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.
During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.
The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.
Powershare Grid Support
To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.
Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.
News
Samsung nears Tesla AI chip ramp with early approval at TX factory
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung clears early operations hurdle
As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.
City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.
Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips.
Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.
Samsung’s U.S. expansion
Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.
Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.
Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.
One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips.



