

News
“Smart skin” can identify weaknesses in bridges and airplanes using laser scanner
Recent research results have demonstrated that two-dimensional, on-demand mapping of the accumulated strain on metal structures will soon be a reality thanks to an engineered “smart skin” that’s only a fraction of the width of a human hair. By utilizing the unique properties of single-walled carbon nanotubes, a two-layer film airbrushed onto surfaces of bridges, pipelines, and airplanes, among others, can be scanned to reveal weaknesses in near real-time. As a bonus, the technology is barely visible even on a transparent surface, making it that much more flexible as an application.
Stress-inducing events, along with regular wear and tear, can deform structures and machines, affecting their safety and operability. Mechanical strain on structural surfaces provides information on the condition of the materials such as damage location and severity. Existing conventional sensors are only able to measure strain in one point along one axis, but with the smart skin technology, strain detection in any direction or location will be possible.
How “Smart Skin” Technology is Used
In 2002, researchers discovered that single-wall carbon nanotubes fluoresce, i.e., glow brightly when stimulated by a light source. Later, the fluorescence was further found to change color when stretched. This optical property was then considered in the context of metal structures that are subject to strain, specifically to apply the property as a diagnostic tool. To obtain the fluorescent data, researchers applied the smart skin to a testing surface, irradiated the area with a small laser scanner, and captured the resulting nanotube color emissions with an infrared spectrometer. Finally, two-dimensional maps of the accumulated strain were generated with the results.
The primary researchers, Professors Satish Nagarajaiah and Bruce Weisman of Rice University in Texas, have published two scientific papers explaining the methods used for achieving this technology and the results of its proof-of-principle application. As described in the papers, aluminum bars with holes or notches in areas of potential stress were tested with the laser technique to demonstrate the full potential of their invention. The points measured were located 1 millimeter apart, but the researchers stated that the points could be located 20 times closer for even more accurate readings. Standard strain sensors have points located several millimeters apart.
What Are Carbon Nanotubes?
Carbon nanotubes (CNTs) are carbon molecules that have been structurally modified into cylinders, or rather, rolled up sheets of carbon atoms. There has been some evidence suggesting that CNTs can be formed via natural processes such as volcanic events. However, to really capitalize on their unique characteristics, production in a laboratory environment is much more efficient.
Several methods can be used for production, but the most widely used method for synthesizing CNTs is chemical vapor deposition (CVD). This process combines a catalyzing metal with a carbon-containing gas which are heated to approximately 1400 degrees Fahrenheit, triggering the carbon molecules to assemble and grow into nanotubes. The resulting formation resembles a forest or lawn grass, each trunk or blade averaging .43 nanometers in diameter. The length is dependent on variables such as the amount of time spent in the high heat environment.

Besides surface analysis, carbon nanotubes have proven invaluable in many research and commercial arenas, their luminescence being only one of many properties that can improve and enable other technologies. Their mechanical tensile strength is 400 times that of steel while only having one sixth the density, making them very lightweight. CNTs also have highly conductive electrical and thermal properties, are extremely resistant to corrosion, and can be filled with other nanomaterials. All of these advantages open up their applications to include solar cells, sensors, drug delivery, electronic devices and shielding, lithium-ion batteries, body armor, and perhaps even a space elevator, assuming significant advances overcome its hurdles.
Next Steps
The nanotube-laced smart skin is ready for scaling up into real-world applications, but its chosen industry may take time to adopt given the general resistance to change in a field with long-standing existing technology. While awaiting embrace in the arena it was primarily designed for, the smart skin has other potential uses in engineering research applications. Bruce Weisman, also the discoverer of CNT fluorescence, anticipates its advantages being used for testing the design of small-scaled structures and engines prior to deployment. Niche applications like these may be the primary entry point into the market for some time to come. In the meantime, the researchers plan to continue developing their strain reader to capture simultaneous readings from large surfaces.
Elon Musk
Tesla to launch in India in July with vehicles already arriving: report
Tesla is finally making serious moves toward launching in India, with showrooms opening in July, a report claims.

Tesla is finally bringing its business to India, a new report indicates, as the company is already shipping vehicles from China to the market where it has attempted to launch business for several years.
We first heard of Tesla planning to launch in India about a decade ago when CEO Elon Musk and Indian Prime Minister Narendra Modi met in California at the Fremont Factory in 2015.
Over the years, the two have hinted that the automaker would eventually land in India, but issues with import duties have delayed Tesla’s attempts.
Now, there seems to be some serious movement in Tesla’s plans, as it has reportedly shipped the first batch of vehicles from China to India, according to Bloomberg. The outlet says these are Model Y Rear-Wheel-Drive configurations.
Tesla is also planning for other parts of the launch, like preparing for Supercharging, aftermarket parts and merchandise purchasing for vehicle owners and fans, and spare parts from various regions, including the United States, China, and the Netherlands.
The company and the Indian government must have come to some sort of agreement that was catalyzed by Musk and Modi’s meeting in February in the U.S.
It is a long time coming, and it now gives Tesla access to an incredibly vast market in India, where a very small percentage of 2024’s total automotive sales were comprised of electric vehicles.
Another interesting tidbit about the launch is that the vehicles will be coming from Gigafactory Shanghai and not Gigafactory Berlin as previously thought. Reports from other publications, like Reuters, indicated the German production facility was building vehicles for India early last year.
India has a very strict policy that favors domestic manufacturing, which is why the import duties were so high for foreign automakers looking to bring their product into the market. These duties were reduced from 110 percent to just 15 percent, as long as companies aim to invest in India and meet certain investment and sales targets.
News
SpaceX and Elon Musk share insights on Starship Ship 36’s RUD
Starship Ship 36 experienced a Rapid Unscheduled Disassembly during a static fire attempt.

Elon Musk and SpaceX provided an explanation for the Rapid Unscheduled Disassembly (RUD) of Starship Ship 36 on Wednesday. As per Musk, preliminary data suggests that a nitrogen composite overwrapped pressure vessel (COPV) in the vehicle’s payload bay failed below its proof pressure.
On Wednesday evening, Ship 36 experienced a RUD during a static fire attempt. Videos of the incident that were shared online showed Starship Ship 36 exploding into a massive fireball at its launchpad in Starbase, Texas. Images taken in the aftermath of the explosion showed significant damage to the plumbing in the area. The site’s pad structure was also destroyed.
Elon Musk shared some information immediately after the incident. In a response to a post from space enthusiast @Erdayastronaut, Musk stated that “Preliminary data suggests that a nitrogen COPV in the payload bay failed below its proof pressure.”
Musk also noted that, “If further investigation confirms that this is what happened, it is the first time ever for this design.”
SpaceX provided more insight into the incident in a post on its official website.
“After completing a single-engine static fire earlier this week, the vehicle was in the process of loading cryogenic propellant for a six-engine static fire when a sudden energetic event resulted in the complete loss of Starship and damage to the immediate area surrounding the stand.
“The explosion ignited several fires at the test site, which remains clear of personnel and will be assessed once it has been determined to be safe to approach. Individuals should not attempt to approach the area while safing operations continue,” SpaceX wrote in its post.
SpaceX highlighted that despite Starship Ship 36’s RUD, the incident will not result in any hazards to the surrounding communities in the Rio Grande Valley. And in a post on X, SpaceX also confirmed that everyone in the Starship team was safe and accounted for after Ship 36’s explosion.
While Ship 36’s RUD is a speed bump for the Starship program, SpaceX is a company that is known to grow stronger with every adversity. Thus, it would not be surprising if SpaceX implemented numerous improvements to Starship after this incident–improvements that would make the vehicle more reliable and safer than before.
News
Tesla has started rolling out initial round of Robotaxi invites
Tesla is putting safety above all in its initial Robotaxi rollout.

Tesla has started rolling out an initial round of invites for its upcoming Robotaxi service in Austin, Texas.
Screenshots shared by several Tesla community members who received the invites provided a quick overview of the autonomous ride-hailing service.
As noted in a techAU report, the initial round of Robotaxi service invites has gone to longtime Tesla owners and active members of the EV community. These include owners such as @SawyerMerritt, @BLKMDL3, @WholeMarsBlog, @ItsKimJava, and @HerbertOng, all of whom shared screenshots of the invitation that Tesla has sent about the upcoming service.
You’re Invited to Early Access of Tesla Robotaxi!
The Future is Now! You’re invited to Early Access of Tesla’s Robotaxi service in Austin, TX!
As an Early Access rider, you can be among the first to use our new Robotaxi App and experience an autonomous ride within our geofenced area in Austin. Through this exclusive preview, you’ll have the opportunity to provide valuable feedback on our Robotaxi service.
Based on Tesla’s message, it appears that participation in the service would be strictly invite-only for now. Participants must also download Tesla’s dedicated Robotaxi App to hail a ride. Rides can also be requested and initiated to and from any location within a geofenced area of Austin.
The robotaxi service will be available from 6:00 AM to 12:00 AM, seven days a week, though these hours may change depending on factors such as inclement weather. Interestingly enough, Tesla is inviting the first participants of the Robotaxi program to share photos and videos of their experience with the service.
While the vehicles themselves are autonomous and would operate without human input, the Robotaxis would still be accompanied by a Tesla staff member to monitor the vehicle. This strategy suggests that Tesla is really putting safety above all in its initial Robotaxi rollout.
-
News2 weeks ago
I took a Tesla Cybertruck weekend Demo Drive – Here’s what I learned
-
Elon Musk2 weeks ago
Tesla tops Cathie Wood’s stock picks, predicts $2,600 surge
-
News2 weeks ago
First Tesla driverless robotaxi spotted in the wild in Austin, TX
-
Elon Musk2 weeks ago
X account with 184 followers inadvertently saves US space program amid Musk-Trump row
-
Elon Musk2 weeks ago
Tesla CEO Elon Musk reveals new details about Robotaxi rollout
-
Elon Musk1 week ago
Tesla sues former Optimus engineer for stealing trade secrets
-
News1 week ago
SpaceX produces its 10 millionth Starlink kit
-
News1 week ago
Tesla Robotaxi just got a big benefit from the U.S. government