Connect with us

News

SpaceX’s 99th Falcon launch checks off new rocket booster reuse record [updated]

SpaceX has successfully launched and landed the same Falcon 9 booster six times during the company's 100th mission. (SpaceX)

Published

on

Update: Right on schedule, SpaceX Falcon 9 booster B1049 lifted off from Cape Canaveral Air Force Station Launch Complex 40 (LC-40) carrying 58 Starlink satellites and three rideshare payloads from Earth observation company Planet.

A bit less than nine minutes after liftoff, B1049 performed a bullseye landing on drone ship Of Course I Still Love You (OCISLY), becoming the first Falcon 9 booster to successfully launch and land six times. Soon after, the expendable Falcon 9 upper stage reached orbit without issue and deployed three Planet SkySats to complete SpaceX’s third Starlink rideshare mission in two months.

Around T+45 minutes, SpaceX revealed that recovery ship GO Ms. Tree (formerly Mr. Steven) had successfully caught a Falcon fairing half for the fifth time – also the second catch of a twice-flown fairing. Seconds later, Falcon 9 deployed all 58 Starlink v1.0 satellites, completing SpaceX’s 11th Starlink mission and leaving almost 600 operational v1.0 satellites in orbit. With this success, SpaceX is now just four launches away from beginning a public Starlink internet beta test.

For the sixth time in two years, Falcon 9 B1049 streaks towards space. (Richard Angle)

SpaceX is hours away from crossing off a major rocket reusability milestone while simultaneously attempting the 99th 100th launch of a Falcon rocket.

SpaceX’s 10th Starlink v1.0 satellite launch, 11th Starlink mission overall, and ninth Starlink launch this year is scheduled to lift off from Cape Canaveral, Florida no earlier than (NET) 10:31 am EDT (14:31 UTC) on Monday, August 18th. Carrying 58 Starlink spacecraft and three Planet SkySat Earth imaging satellites, Starlink-10 will be third mission of SpaceX’s Smallsat Rideshare Program. If the mission goes according to plan, SpaceX will end the day with some 585 operational Starlink satellites in orbit – ~69% of the way to the internet constellation’s initial operational capability (IOC).

If successful, Starlink-10 would leave SpaceX just four launches shy of one of the biggest milestones facing any satellite communications constellation.

SpaceX is about to attempt its 99th 100th launch while simultaneously launching the same Falcon 9 booster for the sixth time – a reusability first. (Richard Angle)

For Starlink, there are likely several different initial operational capability (IOC) milestones ahead of the constellation. As of July 2020, SpaceX says “hundreds” of private beta test participants – mostly SpaceX employees and their families – are already putting the nascent internet service through its paces.

A Starlink user terminal prototype. (SpaceX)

More recently, the first public signs of those beta testers appeared via speed tests shared (intentionally or not) online, revealing Starlink internet speeds ranging from 10-60+ megabits per second (Mbps) and latency (ping) approaching what CEO Elon Musk said early customers should expect (20-30 ms). Already, latency alone puts Starlink internet service leagues above medium Earth orbit (MEO) and geostationary (GEO) competitors, while the speeds available to private beta testers are easily comparable to or better than existing satellite internet alternatives. Given that current beta-testers are only accessing a constellation of a few hundred satellites (of thousands planned) with user terminal prototypes, it’s safe to say that the quality of Starlink internet service can only improve.

While SpaceX is barely a tenth of the way to Starlink’s first ~4400-satellite phase, a May 2020 interview with Gwynne Shotwell revealed that the company intends to open the Starlink beta program to the public once 14 batches of satellites are safely in orbit. Based on recent FCC-SpaceX interactions, it appears that the company is excluding v0.9 satellite prototypes from the operational count, implying that said public beta can begin to roll out once the Starlink V1 L14 (Starlink-14) launch is complete and the satellite batch has boosted into its final orbit.

Advertisement
-->
Starlink-10 is scheduled to launch just 11 days after Starlink-9. (SpaceX)

Main purpose aside, the Starlink-10 mission will also mark several major rocket milestones for SpaceX. Regardless of the outcome, the company will be just one launch shy from cresting the triple-digit

mark, reaching 100 Falcon 1, Falcon 9, and Falcon Heavy launch attempts since its 2005 launch debut. The mission will also be Falcon 9’s 92nd launch and – if successful – 91st success. Based on SpaceX’s activity in the last eight months, the company could feasibly complete another 7-9 launches, of which 4-5 would likely be Starlink missions.

To economically launch so many Starlink missions, SpaceX has dug deep into the reusability of its Falcon 9 rockets. In April, Falcon 9 B1048 became the first booster to launch five times, although an engine failure prevented a landing attempt. In June and August, another two Falcon 9 boosters successfully launched and landed for the fifth time. Now, Falcon 9 B1049 – the first SpaceX rocket to successfully launch and land five times – is set to become the first to launch (and hopefully land) six times with Starlink-10. If the schedule holds and Starlink-10 goes according to plan, SpaceX will have set two consecutive booster reuse records less than three months (75 days) apart.

Tune in at the link below to watch SpaceX’s Starlink-10 launch and landing live.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla’s northernmost Supercharger in North America opens

Published

on

Credit: Tesla

Tesla has opened its northernmost Supercharger in Fairbanks, Alaska, with eight V4 stalls located in one of the most frigid cities in the U.S.

Located just 196 miles from the Arctic Circle, Fairbanks’s average temperature for the week was around -12 degrees Fahrenheit. However, there are plenty of Tesla owners in Alaska who have been waiting for more charging options out in public.

There are only 36 total Supercharger stalls in Alaska, despite being the largest state in the U.S.

Eight Superchargers were added to Fairbanks, which will eventually be a 48-stall station. Tesla announced its activation today:

The base price per kWh is $0.43 at the Fairbanks Supercharger. Thanks to its V4 capabilities, it can charge at speeds up to 325 kW.

Despite being the northernmost Supercharger in North America, it is not even in the Top 5 northernmost Superchargers globally, because Alaska is south of Norway. The northernmost Supercharger is in Honningsvåg, Norway. All of the Top 5 are in the Scandanavian country.

Tesla’s Supercharger expansion in 2025 has been impressive, and although it experienced some early-quarter slowdowns due to V3-to-V4 hardware transitions, it has been the company’s strongest year for deployments.

Through the three quarters of 2025, the company has added 7,753 stations and 73,817 stalls across the world, a 16 percent increase in stations and an 18 percent increase in stalls compared to last year.

Tesla is on track to add over 12,000 stalls for the full year, achieving an average of one new stall every hour, an impressive statistic.

Recently, the company wrapped up construction at its Supercharger Oasis in Lost Hills, California, a 168-stall Supercharger that Tesla Solar Panels completely power. It is the largest Supercharger in the world.

Continue Reading

News

Tesla hints toward Premium Robotaxi offering with Model S testing

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

Published

on

Credit: Sawyer Merritt | X

Tesla Model S vehicles were spotted performing validation testing with LiDAR rigs in California today, a pretty big switch-up compared to what we are used to seeing on the roads.

Tesla utilizes the Model Y crossover for its Robotaxi fleet. It is adequately sized, the most popular vehicle in its lineup, and is suitable for a wide variety of applications. It provides enough luxury for a single rider, but enough room for several passengers, if needed.

However, the testing has seemingly expanded to one of Tesla’s premium flagship offerings, as the Model S was spotted with the validation equipment that is seen entirely with Model Y vehicles. We have written several articles on Robotaxi testing mules being spotted across the United States, but this is a first:

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

It seems to hint that Tesla could add a premium, more luxury offering to its Robotaxi platform eventually. Think about it: Uber has Uber Black, Lyft has Lyft Black. These vehicles and services are associated with a more premium cost as they combine luxury models with more catered transportation options.

Tesla could be testing the waters here, and it could be thinking of adding the Model S to its fleet of ride-hailing vehicles.

Reluctant to remove the Model S from its production plans completely despite its low volume contributions to the overall mission of transitioning the world to sustainable energy, the flagship sedan has always meant something. CEO Elon Musk referred to it, along with its sibling Model X, as continuing on production lines due to “sentimental reasons.”

However, its purpose might have been expanded to justify keeping it around, and why not? It is a cozy, premium offering, and it would be great for those who want a little more luxury and are willing to pay a few extra dollars.

Of course, none of this is even close to confirmed. However, it is reasonable to speculate that the Model S could be a potential addition to the Robotaxi fleet. It’s capable of all the same things the Model Y is, but with more luxuriousness, and it could be the perfect addition to the futuristic fleet.

Continue Reading

News

Rivian unveils self-driving chip and autonomy plans to compete with Tesla

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

Published

on

Credit: Rivian

Rivian unveiled its self-driving chip and autonomy plans to compete with Tesla and others at its AI and Autonomy Day on Thursday in Palo Alto, California.

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

CEO RJ Scaringe said it will learn and become more confident and robust as more miles are driven and it gathers more data. This is what Tesla uses through a neural network, as it uses deep learning to improve with every mile traveled.

He said:

“I couldn’t be more excited for the work our teams are driving in autonomy and AI. Our updated hardware platform, which includes our in-house 1600 sparse TOPS inference chip, will enable us to achieve dramatic progress in self-driving to ultimately deliver on our goal of delivering L4. This represents an inflection point for the ownership experience – ultimately being able to give customers their time back when in the car.”

At first, Rivian plans to offer the service to personally-owned vehicles, and not operate as a ride-hailing service. However, ride-sharing is in the plans for the future, he said:

“While our initial focus will be on personally owned vehicles, which today represent a vast majority of the miles to the United States, this also enables us to pursue opportunities in the rideshare space.”

The Hardware

Rivian is not using a vision-only approach as Tesla does, and instead will rely on 11 cameras, five radar sensors, and a single LiDAR that will face forward.

It is also developing a chip in-house, which will be manufactured by TSMC, a supplier of Tesla’s as well. The chip will be known as RAP1 and will be about 50 times as powerful as the chip that is currently in Rivian vehicles. It will also do more than 800 trillion calculations every second.

RAP1 powers the Autonomy Compute Module 3, known as ACM3, which is Rivian’s third-generation autonomy computer.

ACM3 specs include:

  • 1600 sparse INT8 TOPS (Trillion Operations Per Second).
  • The processing power of 5 billion pixels per second.
  • RAP1 features RivLink, a low-latency interconnect technology allowing chips to be connected to multiply processing power, making it inherently extensible.
  • RAP1 is enabled by an in-house developed AI compiler and platform software

As far as LiDAR, Rivian plans to use it in forthcoming R2 cars to enable SAE Level 4 automated driving, which would allow people to sit in the back and, according to the agency’s ratings, “will not require you to take over driving.”

More Details

Rivian said it will also roll out advancements to the second-generation R1 vehicles in the near term with the addition of UHF, or Universal Hands-Free, which will be available on over 3.5 million miles of roadway in the U.S. and Canada.

Rivian will now join the competitive ranks with Tesla, Waymo, Zoox, and others, who are all in the race for autonomy.

Continue Reading