News
SpaceX to receive $15m from Florida to build Falcon refurbishment facility
The state of Florida’s Space Florida initiative is likely to award SpaceX nearly $15 million in support of the company’s recently-publicized plan to build a new Falcon rocket refurbishment facility and launch control center on Kennedy Space Center property.
All things considered, such an investment would be an extremely savvy move for the state, potentially speeding up an expansion that will pave the way – quite literally in terms of infrastructure — for SpaceX to support a dramatically larger launch cadence in Florida. Writing in an environmental assessment (EA) for the Richards Road project discovered in early June, the company provided a rough estimate for what that growth could look like:
“SpaceX estimates a possible 150 construction jobs associated with the initial development of the Proposed Action, and approximately 70 new SpaceX employees to support additional operations on KSC. SpaceX plans to launch more than 4,000 satellites with the intention that most of these satellites will be launched from LC-39A and LC-40.” (p. 39)
- Satellite imagery from Google Maps shows the currently-abandoned site of SpaceX’s prospective Florida expansion. (Google Maps)
- SpaceX’s Launch Complex 39A pictured in April 2018. (Tom Cross)
- TomCross photographing Falcon 9 with the Zuma payload at SLC-40.
In the case of “most” of “more than 4,000 satellites” being launched from Florida, SpaceX is undoubtedly referring to the first phase of their Starlink internet constellation, a program that is also rapidly growing an R&D team to complete the system’s production-ready design and build a state-of-the-art factory for the vast majority of the network’s major components. For context, 70-90 additional new employees would grow SpaceX’s Florida presence by as much as 20-30% from 2018 levels.
Teslarati reached out to SpaceX for further clarification on the Starlink-related comments in the EA, but the company could not be reached for comment on the matter. However, SpaceX was later able to provide a statement on their prospective Richards Road expansion, reprinted below.
“As SpaceX’s launch cadence and manifest for missions from Florida continues to grow, we are seeking to expand our capabilities and streamline operations to launch, land and re-fly our Falcon family of rockets.”
It’s worth noting that SpaceX President and COO Gwynne Shotwell told CNBC reporters in May 2018 that the company expected 2019 to look more like 2017 (18 launches), suggesting that next year will likely be 30-50% slower than its busy 2018 launch schedule. Although the COO did state that “2019 [will] probably be closer to 2017 due to lower demand”, she didn’t explicitly include non-commercial launches in her figuring.
- While SpaceX’s 2018 manifest is likely to support more annual launches than the company has yet to achieve, the trend slopes a bit down in the 12-24 months that follow. The SES-12 satellite is shown here and was launched in June 2018. (SES)
- Iridium NEXT satellites being attached to the payload dispenser at SpaceX’s VAFB facilities. Iridium’s contract for eight launches should be completed by Q4 2018. (Iridium)
Combined with SpaceX’s official statement that its Florida manifest “continues to grow”, an observation that at face-value plainly contradicts the Chief Operating Officer’s on-record estimations, it seems almost impossible that that manifest growth is not largely a consequence of internal plans to dedicate a number of launches to Starlink satellites. As of June 2018, crowdsourced SpaceX launch manifests show a total of 20 possible launches in 2019 and 12 in 2020 – while plausible that a number of additional missions will be contracted or publicly announced as time marches on, it’s somewhat less plausible that those missions will push SpaceX’s commercial launch demand up to or above 2018 levels (24-28 launches).
https://twitter.com/elonmusk/status/875849793204928512
Starlink launches thus make sense as a gap-filler for the one or two demand-sapped years likely to follow 2018, too near for SpaceX’s reusability-associated launch price drops to make a difference and too early for the company’s full-reusable BFR to come online. Rather conveniently, the production of roughly 12 new Block 5 Falcon 9s and Heavies per year would almost certainly keep all of SpaceX’s rocket manufacturing facilities busy, while also leaving an unfathomably vast fleet of stagnant Block 5 boosters (and hopefully payload fairings) available for any internal missions required by the Starlink program. If Patricia Cooper’s late-2017 statements are still roughly true today, SpaceX plans to begin the first dedicated launches of operational Starlink satellites in 2019, perfectly coinciding with their publicly anticipated lull in commercial launch demand.
Although it does depend on an extraordinarily rapid and successful ramp of the Starlink program, the paradoxical opportunity presented to SpaceX by launch demand lulls in 2019 and 2020 is hard to deny. Around the same time, one would expect the market for launches to begin to seriously respond to the arrival of a new, more affordable paradigm of orbital access, potentially culminating in an unprecedented demand for commercial launches as the price of entry begins to drop appreciably.
News
Tesla confirms that it finally solved its 4680 battery’s dry cathode process
The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years.
The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Dry cathode 4680 cells
In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.
The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”
Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.
4680 packs for Model Y
Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla:
“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”
The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.
Elon Musk
Tesla Giga Texas to feature massive Optimus V4 production line
This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.
Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.
Optimus 4 production
In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas.
This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4.
“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated.
How big Optimus could become
During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world.
“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP.
“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated.
Elon Musk
Rumored SpaceX-xAI merger gets apparent confirmation from Elon Musk
The comment follows reports that the rocket maker is weighing a transaction that could further consolidate Musk’s space and AI ventures.
Elon Musk appeared to confirm reports that SpaceX is exploring a potential merger with artificial intelligence startup xAI by responding positively to a post about the reported transaction on X.
Musk’s comment follows reports that the rocket maker is weighing a transaction that could further consolidate his space and AI ventures.
SpaceX xAI merger
As per a recent Reuters report, SpaceX has held discussions about merging with xAI, with the proposed structure potentially involving an exchange of xAI shares for SpaceX stock. The value, structure, and timing of any deal have not been finalized, and no agreement has been signed.
Musk appeared to acknowledge the report in a brief reply on X, responding “Yeah” to a post that described SpaceX as a future “Dyson Swarm company.” The comment references a Dyson Swarm, a sci-fi megastructure concept that consists of a massive network of satellites or structures that orbit a celestial body to harness its energy.
Reuters noted that two entities were formed in Nevada on January 21 to facilitate a potential transaction for the possible SpaceX-xAI merger. The discussions remain ongoing, and a transaction is not yet guaranteed, however.
AI and space infrastructure
A potential merger with xAI would align with Musk’s stated strategy of integrating artificial intelligence development with space-based systems. Musk has previously said that space-based infrastructure could support large-scale computing by leveraging continuous solar energy, an approach he has framed as economically scalable over time.
xAI already has operational ties to Musk’s other companies. The startup develops Grok, a large language model that holds a U.S. Department of Defense contract valued at up to $200 million. AI also plays a central role in SpaceX’s Starlink and Starshield satellite programs, which rely on automation and machine learning for network management and national security applications.
Musk has previously consolidated his businesses through share-based transactions, including Tesla’s acquisition of SolarCity in 2016 and xAI’s acquisition of X last year. Bloomberg has also claimed that Musk is considering a merger between SpaceX and Tesla in the future.




