Connect with us

News

SpaceX's California Starship factory plans detailed ahead of permitting decision

According to documents published by SpaceX, the company could soon build a miniature version of its Boca Chica Starship factory in the Port of Los Angeles. (SPadre)

Published

on

SpaceX’s California Starship factory plans have been detailed in new documents published by the Los Angeles Board of Harbor Commissioners, one of the last big steps before a crucial permitting decision is made later this week.

First reported on February 1st, SpaceX has resurrected plans to build a Starship factory in Los Angeles, just 20 or so miles away from the company’s Hawthorne, California headquarters. SpaceX abandoned its lease of Port of Los Angeles Berth 240 in the spring of 2019, a decision made a handful of months after the company dramatically scrapped plans to build its next-generation rocket out of carbon-fiber composites. Now known as Starship and Super Heavy and radically redesigned to use steel for 99% of its structural elements, SpaceX has been building prototypes of the Starship upper stage for more than 14 months.

That work has been performed almost exclusively at Boca Chica, Texas facilities that have been in an almost continuous period of gradual expansion and upgrades since late-2018. Situated a few miles from the Mexican border on the southernmost tip of Texas’ Gulf Coast, Boca Chica is an exceptional location for orbital launches from the continental United States but is less than optimal when it comes to build (and more importantly) staffing a high-quality rocket factory. Since Starship prototype fabrication and integration was shifted almost entirely to Texas, SpaceX has had to send expert Hawthorne-based employees to Boca Chica for weeks at a time, often hitching a ride on CEO Elon Musk’s private jet. With a dedicated Port of LA Starship factory, life could be made much easier, cheaper, and – ultimately – better for everyone involved.

Berth 240 was previously used as fairing recovery ship Mr. Steven’s berth and briefly considered for a BFR factory. (Pauline Acalin)

While its growth has been undeniably gradual, SpaceX is in the late stages of building an impressive manufacturing base around its Boca Chica launch facilities. As of Tuesday, February 17th, company contractors have effectively completed the shells of two massive ‘sprung structures’ (tents) that are already being used to house certain Starship fabrication, assembly, and integration operations.

Both tents and the VAB are visible in these recent photos.

Nearby, a separate group is in the late stages of constructing the primary structure of a ~50m (160 ft) tall Vehicle Assembly Building (VAB) with an even taller building also in the pipeline, both of which should allow Starship and Super Heavy stacking, welding, and outfitting to be done in a sheltered, partially climate-controlled environment. Additionally, SpaceX has delivered hardware needed to build a dedicated on-site waterjet shop, giving its Boca Chica outpost the ability to precisely fabricate its own metal parts.

Advertisement

According to SpaceX’s updated 2020 Port of Los Angeles regulatory documents, the company has major ambitions for its resurrected California Starship factory. In simple terms, it really does want to build a true Starship factory instead of something smaller or more specialized. Specifically, SpaceX wants Berth 240 to be able to independently form Starship’s steel rings, stack and weld those rings together, outfit integrated barrel sections with all necessary access ports, plumbing, and flight-related hardware, and build any number of other Starship parts (likely fins, legs, noses, etc.).

SpaceX effectively wants to replicate its Boca Chica Starship hub in the Port of Los Angeles. (NASASpaceflight – bocachicagal)

This time around, SpaceX would refurbish and reuse five aging structures already present at Berth 240, avoiding the potential hassle, delays, and cost of building an entirely new factory (as was previously the plan). It’s likely that SpaceX would eventually erect similar sprung structures on Berth 240’s empty lot, and it looks like the modified permit applications would even allow the company to build the same factory it previously proposed in addition to the new plans to reuse existing structures.

Although reusing abandoned buildings built a century ago will almost bring its own challenges, SpaceX’s tweaked approach does make it likelier (even if still improbable) that the company will be able to realize its ambitious goal of kicking off Berth 240 Starship production just a month or two from now. While not discussed in the permit, SpaceX’s new plans would presumably also involve shipping fully-completed Starship subsections (meaning just a few stacked steel rings at a time) from California to Texas, where Boca Chica workers would ultimately integrate those segments to form finished ships and boosters that can then be acceptance-tested and launched.

For now, though, SpaceX still has to reacquire its old Berth 240 lease and environmental permits before it can begin repairing existing structures and building out its prospective Port of LA rocket factory. Up next, the Los Angeles Harbor Commission will meet on Thursday, February 20th to hear several permit appeals, SpaceX’s included.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Cybercab spotted with interesting charging solution, stimulating discussion

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Published

on

Credit: What's Inside | X

Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.

The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.

But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.

However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.

Wireless for Operation, Wired for Downtime

It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.

The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.

Tesla wireless charging patent revealed ahead of Robotaxi unveiling event

However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.

In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.

Induction Charging Challenges

Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.

While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.

Production Timing and Potential Challenges

With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.

It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.

In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.

Continue Reading

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Advertisement

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Advertisement
Continue Reading

Elon Musk

Tesla Giga Texas to feature massive Optimus V4 production line

This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.

Published

on

Credit: Tesla/YouTube

Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.  

Optimus 4 production

In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas. 

This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4. 

“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated. 

Advertisement

How big Optimus could become

During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world. 

“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP. 

“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated. 

Advertisement
Continue Reading