Connect with us
NASA says that a minor accident that destroyed a crucial Crew Dragon mockup on March 24th should have minimal impact on the spacecraft's astronaut launch debut. (Richard Angle) NASA says that a minor accident that destroyed a crucial Crew Dragon mockup on March 24th should have minimal impact on the spacecraft's astronaut launch debut. (Richard Angle)

News

SpaceX's Crew Dragon is about to escape a supersonic rocket: here's how to watch live

SpaceX's Crew Dragon spacecraft is ready for its second launch ever on a Falcon 9 rocket but this mission's destination is far from orbit. (Richard Angle)

Published

on

SpaceX’s Crew Dragon spacecraft is set to attempt to escape a supersonic Falcon 9 in what will likely be the first intentional in-flight destruction of an orbital-class rocket in decades.

Known as an In-Flight Abort test, Crew Dragon’s second test flight is guaranteed to be spectacular and will thankfully be streamed live by both NASA and SpaceX. Scheduled to lift off no earlier than 8 am EST (13:00 UTC), January 18th, the IFA could also be Crew Dragon’s last uncrewed launch ever, hopefully paving the way for its first orbital flight with NASA astronauts on board just a few months from now.

For now, SpaceX’s primary focus with the IFA test is to prove that Crew Dragon can protect passengers and cargo even in the unlikely event that Falcon 9 fails in flight – after liftoff but before the spacecraft has separated from the rocket.

After several months of delays brought on by the explosion of Crew Dragon capsule C201 in April 2019 and an additional two-week slip from NASA’s first public launch date, Falcon 9 booster (B1046) and Crew Dragon capsule C205 have both completed static fire tests of their respective rocket engines and rolled out to Pad 39A on January 16th.

After at least half a year of investigation and a similar period spent redesigning and requalifying a subsection of the high-pressure propellant plumbing that feeds Crew Dragon’s SuperDraco abort thrusters, new capsule C205 successfully fired up a handful of Draco maneuvering thrusters and all 8 of its SuperDracos abort engines, simulating the burns it will have to perform during Saturday’s IFA test.

Advertisement
-->
A pair of Crew Dragon’s upgraded SuperDraco abort engines perform a static fire test. (SpaceX)

According to NASA and SpaceX, the ~48 hours between rollout and liftoff have been used to perform a dry run for future NASA astronaut launches, more or less exactly replicating the processes that will soon be used for real. Of course, Demo-2 astronauts Bob Behnken and Doug Hurley didn’t actually board the Crew Dragon spacecraft (its interior is unfinished) and will certainly not be on board come liftoff, but everything up to the point of spacecraft ingress was performed as if they will be.

https://twitter.com/JimBridenstine/status/1218244543209852928

Audiences will likely be treated to a rare view from inside SpaceX’s flight operations center, recently permanently relocated to Firing Room 4 of NASA’s Flight Control Center (FCC) – a facility with substantial historical ties to US human spaceflight. It was last utilized as part of Crew Dragon’s inaugural orbital launch – “Demo-1” – in March 2019.

A view of Firing Room 4 in NASA’s Flight Control Center used during Crew Dragon’s inaugural Demonstration-1 Mission in March of 2019.

Approximately 90 seconds after liftoff, shortly after a point of maximum aerodynamic stress called Max Q, Crew Dragon will ignite its SuperDraco abort thrusters in an attempt to prove that it can whisk astronauts to safety in even a near-worst-case scenario. After a 10-second SuperDraco burn, the spacecraft will have to stabilize itself, reenter the bulk of Earth’s atmosphere, and deploy four main parachutes for a gentle splashdown in the Atlantic Ocean.

A combined SpaceX and USAF team will recover the hopefully-intact spacecraft from the ocean, likely using the opportunity to once again simulate the process of recovering a crewed Crew Dragon and safely extracting the NASA astronauts strapped inside it.

SpaceX’s Crew Dragon is guided by four parachutes as it splashes down in the Atlantic Ocean about 200 miles off Florida’s east coast on March 8, 2019, after returning from the International Space Station on the Demo-1 mission. (NASA)

Falcon 9 booster B1046 is expected to be “destroyed in Dragon fire”, according to SpaceX CEO Elon Musk. The Crew Dragon capsule will jettison mid-flight, leaving B1046 open to extremely abnormal aerodynamic stress that will likely tear it and the upper stage apart. NASA says SpaceX will attempt to recover as much of the expected rocket debris as possible.

Crew Dragon’s IFA test has a four-hour launch window with liftoff targeted no earlier than (NET) 8 am EST (13:00 UTC), January 18th. For a variety of reasons, this mission is uniquely susceptible to weather both at and around the launch pad and stands a good chance of slipping much later into the window, and backups are available at the same time on Sunday and Monday.

Regardless, SpaceX will provide live coverage of the test whenever it does launch, beginning around 15 minutes prior to liftoff. Teslarati photographer Richard Angle and reporter Jamie Groh will be on-site to document the events of Crew Dragon crucial – and likely spectacular – flight test.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement
-->

Space Reporter.

Advertisement
Comments

News

Tesla takes a step towards removal of Robotaxi service’s safety drivers

Tesla watchers are speculating that the implementation of in-camera data sharing could be a step towards the removal of the Robotaxi service’s safety drivers.

Published

on

Credit: Tesla

Tesla appears to be preparing for the eventual removal of its Robotaxi service’s safety drivers. 

This was hinted at in a recent de-compile of the Robotaxi App’s version 25.11.5, which was shared on social media platform X. 

In-cabin analytics

As per Tesla software tracker @Tesla_App_iOS, the latest update to the Robotaxi app featured several improvements. These include Live Screen Sharing, as well as a feature that would allow Tesla to access video and audio inside the vehicle. 

According to the software tracker, a new prompt has been added to the Robotaxi App that requests user consent for enhanced in-cabin data sharing, which comprise Cabin Camera Analytics and Sound Detection Analytics. Once accepted, Tesla would be able to retrieve video and audio data from the Robotaxi’s cabin. 

Video and audio sharing

A screenshot posted by the software tracker on X showed that Cabin Camera Analytics is used to improve the intelligence of features like request support. Tesla has not explained exactly how the feature will be implemented, though this might mean that the in-cabin camera may be used to view and analyze the status of passengers when remote agents are contacted.

Advertisement
-->

Sound Detection Analytics is expected to be used to improve the intelligence of features like siren recognition. This suggests that Robotaxis will always be actively listening for emergency vehicle sirens to improve how the system responds to them. Tesla, however, also maintained that data collected by Robotaxis will be anonymous. In-cabin data will not be linked to users unless they are needed for a safety event or a support request. 

Tesla watchers are speculating that the implementation of in-camera data sharing could be a step towards the removal of the Robotaxi service’s safety drivers. With Tesla able to access video and audio feeds from Robotaxis, after all, users can get assistance even if they are alone in the driverless vehicle. 

Continue Reading

Investor's Corner

Mizuho keeps Tesla (TSLA) “Outperform” rating but lowers price target

As per the Mizuho analyst, upcoming changes to EV incentives in the U.S. and China could affect Tesla’s unit growth more than previously expected.

Published

on

Credit: Tesla China

Mizuho analyst Vijay Rakesh lowered Tesla’s (NASDAQ:TSLA) price target to $475 from $485, citing potential 2026 EV subsidy cuts in the U.S. and China that could pressure deliveries. The firm maintained its Outperform rating for the electric vehicle maker, however. 

As per the Mizuho analyst, upcoming changes to EV incentives in the U.S. and China could affect Tesla’s unit growth more than previously expected. The U.S. accounted for roughly 37% of Tesla’s third-quarter 2025 sales, while China represented about 34%, making both markets highly sensitive to policy shifts. Potential 50% cuts to Chinese subsidies and reduced U.S. incentives affected the firm’s outlook.

With those pressures factored in, the firm now expects Tesla to deliver 1.75 million vehicles in 2026 and 2 million in 2027, slightly below consensus estimates of 1.82 million and 2.15 million, respectively. The analyst was cautiously optimistic, as near-term pressure from subsidies is there, but the company’s long-term tech roadmap remains very compelling. 

Despite the revised target, Mizuho remained optimistic on Tesla’s long-term technology roadmap. The firm highlighted three major growth drivers into 2027: the broader adoption of Full Self-Driving V14, the expansion of Tesla’s Robotaxi service, and the commercialization of Optimus, the company’s humanoid robot. 

“We are lowering TSLA Ests/PT to $475 with Potential BEV headwinds in 2026E. We believe into 2026E, US (~37% of TSLA 3Q25 sales) EV subsidy cuts and China (34% of TSLA 3Q25 sales) potential 50% EV subsidy cuts could be a headwind to EV deliveries. 

Advertisement
-->

“We are now estimating TSLA deliveries for 2026/27E at 1.75M/2.00M (slightly below cons. 1.82M/2.15M). We see some LT drivers with FSD v14 adoption for autonomous, robotaxi launches, and humanoid robots into 2027 driving strength,” the analyst noted. 

Continue Reading

News

Tesla’s Elon Musk posts updated Robotaxi fleet ramp for Austin, TX

Musk posted his update on social media platform X.

Published

on

Credit: @AdanGuajardo/X

Elon Musk says Tesla will “roughly double” its supervised Robotaxi fleet in Austin next month as riders report long wait times and limited availability across the pilot program in the Texas city. Musk posted his update on social media platform X.

The move comes as Waymo accelerates its U.S. expansion with its fully driverless freeway service, intensifying competition in autonomous mobility.

Tesla to increase Austin Robotaxi fleet size

Tesla’s Robotaxi service in Austin continues to operate under supervised conditions, requiring a safety monitor in the front seat even as the company seeks regulatory approval to begin testing without human oversight. The current fleet is estimated at about 30 vehicles, StockTwists noted, and Musk’s commitment to doubling that figure follows widespread rider complaints about limited access and “High Service Demand” notifications.

Influencers and early users of the Robotaxi service have observed repeated failures to secure a ride during peak times, highlighting a supply bottleneck in one of Tesla’s most visible autonomy pilots. The expansion aims to provide more consistent availability as the company scales and gathers more real-world driving data, an advantage analysts often cite as a differentiator versus rivals. 

Broader rollout plans

Tesla’s Robotaxi service has so far only been rolled out to Austin and the Bay Area, though reports have indicated that the electric vehicle maker is putting in a lot of effort to expand the service to other cities across the United States. Waymo, the Robotaxi service’s biggest competitor, has ramped its service to areas like the San Francisco Bay Area, Los Angeles, and Phoenix. 

Advertisement
-->

Analysts continue to highlight Tesla’s long-term autonomy potential due to its global fleet size, vertically integrated design, and immense real-world data. ARK Invest has maintained that Tesla Robotaxis could represent up to 90% of the company’s enterprise value by 2029. BTIG analysts, on the other hand, added that upcoming Full Self-Driving upgrades will enhance reasoning, particularly parking decisions, while Tesla pushes toward expansions in Austin, the Bay Area, and potentially 8 to 10 metro regions by the end of 2025.

Continue Reading