News
SpaceX techs work towards Falcon 9 fairing recovery with wacky series of experiments
Over the course of the past week, Teslarati photographer Pauline Acalin has captured a multitude of unusual occurrences at SpaceX’s Port of Los Angeles dock space, each time involving a Falcon fairing recovery vessel like Mr Steven or NRC Quest, a Falcon fairing half (flight-proven or otherwise), and one of several attenuating circumstances.
More likely than not, what appears as a menagerie of weird and disconnected events on the sidelines is actually a reasonably organized leg of a larger program, in this case focused on experimentation and testing to close the fairing recovery loop and secure Mr Steven’s first successful fairing catch.
From @USCGLosAngeles – A captive carry test involving a helicopter picking an item from a vessel will be conducted 9/20, 11-1300, in the vicinity of San Clemente Island in the San Nicolas Basin. Mariners are requested to maintain a distance of 5NM from the operation. pic.twitter.com/nvy6Wo0IvF
— Marine Exchange (@MXSOCAL) September 19, 2018
The mystery of Catalina Island
Now-iconic fairing recovery vessel (or net-boat, or claw-boat) Mr Steven has been out of commission since late August, at which point SpaceX technicians removed all four of his arms and their eight complementary shock absorber booms towards unknown ends. If SpaceX’s past is any judge, those arms are probably in the process of being upgraded, but it’s impossible to judge thanks to the fact that they have simply disappeared from the Berth 240 docks where they were briefly stored. SpaceX certainly has a way with transporting massive, ungainly objects without stirring a whisper.
Despite lacking arms for more than a month, Mr Steven has still performed a number of sea-trials, ranging from average jaunts a few miles away to a mysterious armless test described in the tweet above. Why exactly Mr Steven was involved in an experiment involving a helicopter “picking an item” – in this case a flight-proven Falcon fairing – off of a vessel while entirely lacking the arms and net he would use to catch said fairing is entirely unclear. Perhaps it was meant to test a datalink or a change to fairing recovery hardware. Whatever transpired, a group of SpaceX technicians certainly flew to Catalina Island and were working alongside or with a Blackhawk helicopter capable of externally carrying up to 3600 kg (8000 lb) of cargo.
- Shortly after completing the CRS-15 resupply mission, Cargo Dragon C110 is craned from NRC Quest to SpaceX’s Port of San Pedro berth, 08/05/18. (Pauline Acalin)
- Mr Steven was out and about conducting high-speed maneuvers two days prior, and also joined NRC Quest near Catalina Island on the 20th. (Pauline Acalin)
- NRC Quest returned to port with a Falcon fairing aboard after a long day doing *something* at sea. (Pauline Acalin)
- Note the sooty tip of the fairing’s nose, a telltale sign that it previously flew on a Falcon 9 launch. (Pauline Acalin)
Multipurpose recovery vessel NRC Quest – nominally dedicated to Cargo Dragon spacecraft recoveries – returned to SpaceX-leased Berth 240 a few hours after the September 20th test window closed, sooty Falcon 9 fairing half in tow. Still, this certainly isn’t the weirdest Falcon fairing-related activity to occur last week.
Fairings aplenty
Meanwhile, over at Mr Steven’s old berth and drone ship Just Read The Instructions’ current berth, a different Falcon fairing half appeared sometime in the last several days in an unusual state, seemingly either fresh out of the factory or in an advanced state of disassembly. The base of this particular fairing half seems to be entirely missing the usual layer(s) of material (cork, among other things) used to waterproof and act as a lightweight heatshield. A new fairing half sitting out in the elements with zero protection would be exceptionally unusual, as CEO Elon Musk has noted that they each cost several million dollars ($3m to be precise), and exposure outside of a cleanroom could very well prevent this half from ever being operationally flown.

The next best conclusion to be drawn is that this unique fairing half is new or flight-proven (with skin and shielding removed), but sitting at SpaceX’s dock space in order to prepare for one or several active drop tests in pursuit of Mr Steven’s first successful fairing catch. But who really knows, to be honest. The fairing’s bare carbon fiber composite construction is certainly a sight to behold, one way or another.
Doing…something.
This leads us to the grand (perhaps… titanic) finale of wholly unexpected Falcon fairing activities over the last several days. Presumably making the best of an opportunity to test NRC Quest’s ability to recover Falcon fairings after splashdown (i.e. missing Mr Steven’s net), the pictures generally tell the story better than any words ever could. Keep your eyes peeled for Fairing Wrangler job openings.
- Getting the (un)lucky half into the water. (Pauline Acalin)
- One lucky dude. (Pauline Acalin)
- Weeeeeeeeee. (Pauline Acalin)
- NRC Quest then lifted the fairing half (likely from Iridium-7) aboard. (Pauline Acalin)
- NRC Quest then lifted the fairing half (likely from Iridium-7) aboard. (Pauline Acalin)
- This extraordinarily unusual operation lent an opportunity to see just how flexible and structurally optimized SpaceX’s payload fairings are. (Pauline Acalin)
- After returning from a day at sea doing who-knows-what, Mr Steven’s captain attempted to use the 500 metric ton vessel to splash a fellow recovery tech. A for effort. (Pauline Acalin)
Up next for SpaceX, Mr Steven, and the West Coast recovery crew is SAOCOM-1A, scheduled to launch from California’s Vandenberg Air Force Base on the evening (Pacific Time) of October 6th.
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!
News
Tesla Cybercab production begins: The end of car ownership as we know it?
While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.
The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.
Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

Credit: wudapig/Reddit< /a>
While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.
Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.
The Promise – A Radical Shift in Transportation Economics
Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.
Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.
Tesla ups Robotaxi fare price to another comical figure with service area expansion
It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.
However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).
The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.
The Dark Side – Job Losses and Industry Upheaval
With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.
Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.
There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.
Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.
It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.
Balancing Act – Who Wins and Who Loses
There are two sides to this story, as there are with every other one.
The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.
Elon Musk confirms Tesla Cybercab pricing and consumer release date
Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.
Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.
A Call for Thoughtful Transition
The Cybercab’s production debut forces us to weigh innovation against equity.
If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.
Elon on the MKBHD bet, stating “Yes” to the question of whether Tesla would sell a Cybercab for $30k or less to a customer before 2027 https://t.co/sfTwSDXLUN
— TESLARATI (@Teslarati) February 17, 2026
The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.
News
Tesla Model 3 wins Edmunds’ Best EV of 2026 award
The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”
The Tesla Model 3 has won Edmunds‘ Top Rated Electric Car of 2026 award, beating out several other highly-rated and exceptional EV offerings from various manufacturers.
This is the second consecutive year the Model 3 beat out other cars like the Model Y, Audi A6 Sportback E-tron, and the BMW i5.
The car, which is Tesla’s second-best-selling vehicle behind the popular Model Y crossover, has been in the company’s lineup for nearly a decade. It offers essentially everything consumers could want from an EV, including range, a quality interior, performance, and Tesla’s Full Self-Driving suite, which is one of the best in the world.
The Tesla Model 3 has won Edmunds Top EV of 2026:
“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is… pic.twitter.com/ARFh24nnDX
— TESLARATI (@Teslarati) February 18, 2026
The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”
In its Top Rated EVs piece on its website, it said about the Model 3:
“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is impressively well-rounded thanks to improved build quality, ride comfort, and a compelling combination of efficiency, performance, and value.”
Additionally, Jonathan Elfalan, Edmunds’ Director of Vehicle Testing, said:
“The Model 3 offers just about the perfect combination of everything — speed, range, comfort, space, tech, accessibility, and convenience. It’s a no-brainer if you want a sensible EV.”
The Model 3 is the perfect balance of performance and practicality. With the numerous advantages that an EV offers, the Model 3 also comes in at an affordable $36,990 for its Rear-Wheel Drive trim level.
Elon Musk
Elon Musk’s xAI celebrates nearly 3,000 headcount at Memphis site
The update came in a post from the xAI Memphis account on social media platform X.
xAI has announced that it now employs nearly 3,000 people in Memphis, marking more than two years of local presence in the city amid the company’s supercomputing efforts.
The update came in a post from the xAI Memphis account on social media platform X.
In a post on X, xAI’s Memphis branch stated it has been part of the community for over two years and now employs “almost 3,000 locally to help power Grok.” The post was accompanied by a photo of the xAI Memphis team posing for a rather fun selfie.
“xAI is proud to be a member of the Memphis community for over two years. We now employ almost 3,000 locally to help power @Grok. From electricians to engineers, cooks to construction — we’re grateful for everyone on our team!” the xAI Memphis’ official X account wrote.
xAI’s Memphis facilities are home to Grok’s foundational supercomputing infrastructure, including Colossus, a large-scale AI training cluster designed to support the company’s advanced models. The site, located in South Memphis, was announced in 2024 as the home of one of the world’s largest AI compute facilities.
The first phase of Colossus was built out in record time, reaching its initial 100,000 GPU operational status in just 122 days. Industry experts such as Nvidia CEO Jensen Huang noted that this was significantly faster than the typical 2-to-4-year timeline for similar projects.
xAI chose Memphis for its supercomputing operations because of the city’s central location, skilled workforce, and existing industrial infrastructure, as per the company’s statements about its commitment to the region. The initiative aims to create hundreds of permanent jobs, partner with local businesses, and contribute to economic and educational efforts across the area.
Colossus is intended to support a full training pipeline for Grok and future models, with xAI planning to scale the site to millions of GPUs.










