Connect with us

News

SpaceX Falcon 9 booster spied on highway as triple-satellite launch moves right

Reddit user intamin1 spotted a Falcon 9 booster northbound between Hawthorne and Vandenberg on Jan 22. (Reddit /u/intamin1)

Published

on

A SpaceX Falcon 9 booster was spotted heading north from the company’s Hawthorne, California factory on January 22nd, signifying a likely shipment of the flight-proven rocket that will help launch Canada’s trio of Radarsat Constellation Mission satellites.

Delayed from mid-February to early March 2019 after an unplanned landing anomaly damaged the Falcon 9 originally assigned to the mission, the shipment of a different booster to Vandenberg Air Force Base (VAFB) helps to narrow down the rocket now likeliest to launch the Canadian Space Agency’s (CSA) radar satellite constellation.

https://twitter.com/GoForStaging/status/1088174203298230272

Do the Booster Shuffle!

Thanks to a hydraulic pump failure that led Falcon 9 B1050 to land (albeit softly and in one piece) in the Atlantic Ocean last December, the imminent launch of two booster-dense Falcon Heavy missions, and the thus far schedule-shy orbital launch debut of Crew Dragon, SpaceX’s fleet of available boosters – all flight-proven – can be succinctly summarized as “B1046 thru B1049”.

Advertisement

B1050’s future is uncertain after suffering a smashed interstage and soaking in salt water for several days, while B1051 is definitively assigned to Crew Dragon’s orbital launch debut, known as Demo-1 (DM-1). Falcon 9 B1052 and B1053 are unknown quantities and B1054 was expended after a high-value US Air Force launch, also SpaceX’s final mission of 2018. It’s probably safe to bet that B1052, B1053, and B1055 will be the next three boosters to support a Falcon Heavy launch (or two), currently NET March and April 2019. All three of those Falcon Heavy (FH) boosters have completed static fire tests in Texas and both side boosters arrived at SpaceX’s Florida facilities within the last ~6 weeks.

 

Assuming that Falcon Heavy Flight 2 and 3 use the same exact boosters, SpaceX production technicians and engineers may already be nearing the completion of another Falcon 9 booster (B1056, presumably) at the Hawthorne factory, although they are likely 1-2 weeks away from that milestone. If, Falcon Heavy Flight 3 (presumed to be the USAF’s STP-2 mission) does not reuse all three first stage boosters from Flight 2 (commercial payload Arabsat 6A), then Hawthorne will have to build, ship, and test anywhere from 1-3 additional boosters between now and April 2019. In the latter scenario, all unflown – mid-build or completed – Falcon boosters would be ‘claimed’ between now and March or April.

Put in another way, short of opting for a delay that could stretch 1-4 months or longer, the Canadian Space Agency (CSA) and Radarsat prime contractor MDA will have to accept one of SpaceX’s flight-proven Falcon 9s.

Advertisement

Falcons on wheels

Thanks to SpaceX’s trusty and well-worn method of using good old trucks and roads to transport Falcon 9 and Heavy boosters, upper stages, fairings, landing legs, and much more cross-country, spaceflight fans have long taken advantage of opportunities – rare and fleeting as they might be – to spot and track SpaceX hardware on public roads. Put simply, a lot of people are excited about SpaceX or are at least familiar and curious enough to know someone to share a photo or observation with. As a result, the community averages dozens of ‘core spottings’ per year. With a little intuition, the process of elimination, a few sources, and some wild guesses, this allows unofficial fans to (very roughly) paint a picture of SpaceX’s fleet of rockets.

 

For example, the Falcon 9 spotted in Valencia, CA on January 22nd by Reddit user intamin1 could theoretically be any SpaceX booster currently in existence. By knowing the rough state of SpaceX’s fleet (as described above) and observing that the booster was northbound between Hawthorne, CA (the factory) and Vandenberg Air Force Base (VAFB) on Jan 22, a great deal can be intuited. Bound for SpaceX’s West Coast launch complex (SLC-4), it ought to be flightworthy. Knowing that a Falcon Heavy center booster was on SpaceX’s McGregor, Texas static fire stand on January 10th means that the spotted booster can’t (or at least shouldn’t) be coming from Texas, as Falcon Heavy has no known launches planned from VAFB. The process of testing, inspecting, and preparing Falcon boosters for cross-country shipment is also not easily rushed.

On the East Coast, SpaceX needs to launch communications satellite PSN-6 and Spaceflight rideshare GTO-1 in mid to late February. With no new boosters expected to be easily available for months and PSN-6/GTO-1 already entering into the phases of payload fueling, integration, and fairing encapsulation, it can be all but guaranteed that a flight-proven booster was assigned to the mission months ago and is now nearly ready for its third flight somewhere in Cape Canaveral, FL.

Advertisement
SpaceX manufactures Falcon 9 and Heavy at its Hawthorne, CA factory. (SpaceX)

Given that B1046 and B1049 are on the West Coast after conducting launches from VAFB and that B1050 is out of circulation for the time being, only B1047 and B1048 remain (in theory) on the East Coast, both having flown two missions. B1048 was recently spotted and confirmed in photos of SpaceX’s Pad 39A integration hangar, although Falcon 9 B1051 and the first orbit-ready Crew Dragon were the center of attention.

B1047 completed its second launch in mid-November 2018 and returned to one of SpaceX’s Florida hangars for refurbishment around Nov 21. Unless any number of locals and bystanders somehow missed it, neither booster has left the Cape since arriving. Meanwhile, B1048 is currently the best-known candidate at hand for SpaceX’s Crew Dragon In-Flight Abort (IFA) test, expected to occur no earlier than spring 2019 and entirely dependent upon the successful launch, reentry, recovery, and refurbishment of the DM-1 capsule to proceed. As a result, the only booster that is realistically available for PSN-6/GTO-1 is Falcon 9 B1047 for what would be its third launch.

Advertisement

Assuming B1048 did not manage to make it from Cape Canaveral to Central California without a single spotting, the only rockets available for the RCM mission are B1046 and B1049. B1049 completed its second launch – Iridium-8 – just weeks ago and returned by drone ship to Port of LA on January 13th, whereas Falcon 9 B1046 – after completing its historic third launch – completed recovery and was snug in a Hawthorne, CA refurbishment bay by December 17th, 2018. Going off of Occam’s Razor, B1046 is the clear victor for the launch of RCM, although a ~60-90-day turnaround for the already thrice-flown booster could be a stretch. B1049, however, would have barely a single month for refurbishment and inspections.

In the last week or two, RCM stakeholders were provided an updated launch target, delaying the mission by approximately two weeks to a window that begins February 28th with the implication being that the launch is now expected NET early March. If that date is recent and from SpaceX, B1046 is the most practical option, with B1049 thus filling its refurbishment bay in Hawthorne, CA around the same day. If a risk of a 30-day or greater delay is tolerable for CSA and MDA, then B1049.3 would likely be a more optimal fit for their risk tolerance profile. Time will tell!


Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes!

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)

Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Published

on

SpaceX's first Falcon Heavy launch also happened to be a strategic and successful test of Falcon upper stage coast capabilities. (SpaceX)

When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.

At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.

The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.

Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Advertisement
Credit: SpaceX

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.

And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.

SpaceX’s trajectory has been just as dramatic.

The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon Heavy successfully clears the tower after its maiden launch, February 6, 2018. (Tom Cross)

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.

Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.

Advertisement

And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.

In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.

The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Advertisement
Continue Reading

Energy

Tesla launches Cybertruck vehicle-to-grid program in Texas

The initiative was announced by the official Tesla Energy account on social media platform X.

Published

on

Credit: Tesla

Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills. 

The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.

Texas’ Cybertruck V2G program

In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.

During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.

Advertisement

The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.

Powershare Grid Support

To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.

Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.

Continue Reading

News

Samsung nears Tesla AI chip ramp with early approval at TX factory

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Published

on

Tesla-Chips-HW3-1
Image used with permission for Teslarati. (Credit: Tom Cross)

Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Samsung clears early operations hurdle

As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.

City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.

Advertisement

Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips. 

Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.

Samsung’s U.S. expansion

Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.

Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.

Advertisement

Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.

One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips. 

Advertisement
Continue Reading