Connect with us
Falcon Heavy Flight 2. The booster in the middle - B1055 - was effectively sheared in half after tipping over aboard drone ship OCISLY. (Pauline Acalin) Falcon Heavy Flight 2. The booster in the middle - B1055 - was effectively sheared in half after tipping over aboard drone ship OCISLY. (Pauline Acalin)

News

SpaceX’s first flight-proven Falcon Heavy Block 5 rocket ready for static fire test

Falcon Heavy Block 5 is seen here ahead of the rocket's commercial launch debut, April 2019. Both side boosters (left and right) will launch again on the USAF's STP-2 mission. (Pauline Acalin)

Published

on

According to NASASpaceflight.com, SpaceX is just ~48 hours away from Falcon Heavy Flight 3’s critical static fire test, in which all 27 of the rocket’s Merlin 1D engines will be briefly ignited.

If the routine test goes as planned, SpaceX’s third completed Falcon Heavy will be ready to lift off as early as 11:30 pm ET (03:30 UTC), June 24th. Atop the massive rocket will be the US Air Force’s Space Test Program-2 (STP-2) mission, a collection of 24 small satellites from a variety of US government agencies and academic institutions. Practically speaking, STP is often more of an engineered excuse to launch, involving satellites and customers that are willing to accept higher risk than more valuable payloads, making it far easier for the US military to certify new technologies and new commercial launch vehicles.

As previously discussed on Teslarati, STP-2 is an extremely ambitious mission that aims to simultaneously certify or pave the way towards certification of critical capabilities. First and foremost, it will (barring serious anomalies) give the US military the data it needs to certify SpaceX’s Falcon Heavy rocket for all national defense launches, giving ULA’s Delta IV Heavy its first real competition in a decade and a half.

Each of those three rocket nozzles is roughly 2.5m (8 feet) across, plenty of room for all but the tallest humans to stand up in.
ULA’s Delta IV Heavy lifts off in August 2018 during the launch of NASA’s Parker Solar Probe. (Tom Cross)

Included under the umbrella of that catch-all certification is a sort of torture-test validation of the long-coast capabilities of SpaceX’s Falcon upper stage. To successfully complete STP-2, the upper stage will be subjected to “four separate upper-stage engine burns, three separate deployment orbits, a final propulsive passivation maneuver, and a total mission duration of over six hours.” It will likely be SpaceX’s most technically-challenging launch ever.

To complete STP-2, Falcon Heavy’s upper stage – essentially the same thing that flies on Falcon 9 – will be subjected to its most challenging mission profile yet. (SpaceX)

Finally, the US Air Force has decided that STP-2 presents an excellent opportunity to begin the process of certifying flight-proven SpaceX rockets for military launches. The STP-2-related work is more of a preliminary effort for the USAF to actually figure out how to certify flight-proven commercial rockets, but it will still be the first time the a dedicated US military mission has flown on a flight-proven launch vehicle. Down the road, the processes set in place thanks – in part – to STP-2 and Falcon Heavy may also apply to aspirational rockets like Blue Origin’s New Glenn and ULA’s “SMART” concept for Vulcan reuse.

Still, New Glenn is unlikely to be ready for flight-proven military launches until the mid-2020s, while ULA has no plans to even attempt to implement Vulcan’s “SMART” reuse until ~2026, meaning that military certification probably wont come until 2028-2030 at the earliest. SpaceX has thus earned roughly half a decade where it will be the only viable US launch provider that can offer certified flight-proven hardware with an established record of reliability. Although the Air Force Research Laboratory (AFRL) had a lone smallsat aboard SpaceX’s February 2019 launch of PSN-6 and Spaceflight’s GTO-1 mission, STP-2 will be the first time a dedicated Department of Defense mission has flown on flight-proven launch vehicle hardware since 1992 (STS-53).

USAF photographer James Rainier's remote camera captured this spectacular view of Falcon Heavy Block 5 side boosters B1052 and B1053 returning to SpaceX Landing Zones 1 and 2. (USAF - James Rainier)
Falcon Heavy side boosters B1052 and B1053 land at Landing Zones 1 and 2 (LZ-1/LZ-2) after their launch debut and Falcon Heavy’s first commercial mission. Both will fly again as part of the STP-2 mission. (USAF – James Rainier)

Aside from flight-proven Falcon Heavy side boosters B1052 and B1053, STP-2 is expected to use a new center core, B1057. SpaceX is in the late stages of vehicle integration and should be nearly complete by Monday, June 17th in order to support a June 18th static fire. The specific static fire window is not yet public but Falcon Heavy will likely roll out to Pad 39A no less than 12 hours before.

STP-2 Falcon Heavy Preparations in HIF at 39-A
On June 11th, Joshua Mendoza captured this exceptional view of Falcon Heavy Flight 3 integration inside SpaceX’s Pad 39A hangar. Visible are the rocket’s payload fairing (right), center core (middle), and upper stage (middle/left).

Teslarati photographers Tom Cross and Pauline Acalin will both be on site with a bevy of remote cameras to capture SpaceX’s third Falcon Heavy before, during, and after liftoff. STP-2 will be Falcon Heavy’s first attempted nighttime launch. Stay tuned for updates as we get closer to T-0!

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Robotaxi’s biggest rival sends latest statement with big expansion

The new expanded geofence now covers a broader region of Austin and its metropolitan areas, extended south to Manchaca and north beyond US-183.

Published

on

Credit: @AdanGuajardo/X

Tesla Robotaxi’s biggest rival sent its latest statement earlier this month by making a big expansion to its geofence, pushing the limits up by over 50 percent and nearing Tesla’s size.

Waymo announced earlier this month that it was expanding its geofence in Austin by slightly over 50 percent, now servicing an area of 140 square miles, over the previous 90 square miles that it has been operating in since July 2025.

Tesla CEO Elon Musk shades Waymo: ‘Never really had a chance’

The new expanded geofence now covers a broader region of Austin and its metropolitan areas, extended south to Manchaca and north beyond US-183.

These rides are fully driverless, which sets them apart from Tesla slightly. Tesla operates its Robotaxi program in Austin with a Safety Monitor in the passenger’s seat on local roads and in the driver’s seat for highway routes.

It has also tested fully driverless Robotaxi services internally in recent weeks, hoping to remove Safety Monitors in the near future, after hoping to do so by the end of 2025.

Although Waymo’s geofence has expanded considerably, it still falls short of Tesla’s by roughly 31 square miles, as the company’s expansion back in late 2025 put it up to roughly 171 square miles.

There are several differences between the two operations apart from the size of the geofence and the fact that Waymo is able to operate autonomously.

Waymo emphasizes mature, fully autonomous operations in a denser but smaller area, while Tesla focuses on more extensive coverage and fleet scaling potential, especially with the potential release of Cybercab and a recently reached milestone of 200 Robotaxis in its fleet across Austin and the Bay Area.

However, the two companies are striving to achieve the same goal, which is expanding the availability of driverless ride-sharing options across the United States, starting with large cities like Austin and the San Francisco Bay Area. Waymo also operates in other cities, like Las Vegas, Los Angeles, Orlando, Phoenix, and Atlanta, among others.

Tesla is working to expand to more cities as well, and is hoping to launch in Miami, Houston, Phoenix, Las Vegas, and Dallas.

Continue Reading

Elon Musk

Tesla automotive will be forgotten, but not in a bad way: investor

It’s no secret that Tesla’s automotive division has been its shining star for some time. For years, analysts and investors have focused on the next big project or vehicle release, quarterly delivery frames, and progress in self-driving cars. These have been the big categories of focus, but that will all change soon.

Published

on

(Credit: Tesla)

Entrepreneur and Angel investor Jason Calacanis believes that Tesla will one day be only a shade of how it is recognized now, as its automotive side will essentially be forgotten, but not in a bad way.

It’s no secret that Tesla’s automotive division has been its shining star for some time. For years, analysts and investors have focused on the next big project or vehicle release, quarterly delivery frames, and progress in self-driving cars. These have been the big categories of focus, but that will all change soon.

I subscribed to Tesla Full Self-Driving after four free months: here’s why

Eventually, and even now, the focus has been on real-world AI and Robotics, both through the Full Self-Driving and autonomy projects that Tesla has been working on, as well as the Optimus program, which is what Calacanis believes will be the big disruptor of the company’s automotive division.

On the All-In podcast, Calcanis revealed he had visited Tesla’s Optimus lab earlier this month, where he was able to review the Optimus Gen 3 prototype and watch teams of engineers chip away at developing what CEO Elon Musk has said will be the big product that will drive the company even further into the next few decades.

Calacanis said:

“Nobody will remember that Tesla ever made a car. They will only remember the Optimus.”

He added that Musk “is going to make a billion of those.”

Musk has stated this point himself, too. He at one point said that he predicted that “Optimus will be the biggest product of all-time by far. Nothing will even be close. I think it’ll be 10 times bigger than the next biggest product ever made.”

He has also indicated that he believes 80 percent of Tesla’s value will be Optimus.

Optimus aims to totally revolutionize the way people live, and Musk has said that working will be optional due to its presence. Tesla’s hopes for Optimus truly show a crystal clear image of the future and what could be possible with humanoid robots and AI.

Continue Reading

News

Tesla Robotaxi fleet reaches new milestone that should expel common complaint

There have been many complaints in the eight months that the Robotaxi program has been active about ride availability, with many stating that they have been confronted with excessive wait times for a ride, as the fleet was very small at the beginning of its operation.

Published

on

Credit: Tesla

Tesla Robotaxi is active in both the Bay Area of California and Austin, Texas, and the fleet has reached a new milestone that should expel a common complaint: lack of availability.

It has now been confirmed by Robotaxi Tracker that the fleet of Tesla’s ride-sharing vehicles has reached 200, with 158 of those being available in the Bay Area and 42 more in Austin. Despite the program first launching in Texas, the company has more vehicles available in California.

The California area of operation is much larger than it is in Texas, and the vehicle fleet is larger because Tesla operates it differently; Safety Monitors sit in the driver’s seat in California while FSD navigates. In Texas, Safety Monitors sit in the passenger’s seat, but will switch seats when routing takes them on the highway.

Tesla has also started testing rides without any Safety Monitors internally.

Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing

This new milestone confronts a common complaint of Robotaxi riders in Austin and the Bay, which is vehicle availability.

There have been many complaints in the eight months that the Robotaxi program has been active about ride availability, with many stating that they have been confronted with excessive wait times for a ride, as the fleet was very small at the beginning of its operation.

With that being said, there have been some who have said wait times have improved significantly, especially in the Bay, where the fleet is much larger.

Tesla’s approach to the Robotaxi fleet has been to prioritize safety while also gathering its footing as a ride-hailing platform.

Of course, there have been and still will be growing pains, but overall, things have gone smoothly, as there have been no major incidents that would derail the company’s ability to continue developing an effective mode of transportation for people in various cities in the U.S.

Tesla plans to expand Robotaxi to more cities this year, including Miami, Las Vegas, and Houston, among several others.

Continue Reading