News
SpaceX’s Falcon Heavy fairing tries to enter hyperspace, lands in net in new videos
SpaceX and CEO Elon Musk have released videos offering an extended look at the unexpectedly dramatic conditions Falcon payload fairings are subjected to during atmospheric reentry, as well as the first successful landing in GO Ms. Tree’s net.
Captured via an onboard GoPro camera during Falcon Heavy’s June 25th launch of the USAF Space Test Program-2 (STP-2) mission, the minute-long cut shows off a light show more indicative of a spacecraft entering hyperspace than the slightly more mundane reality. Shortly after SpaceX posted the reentry video, CEO Elon Musk followed up with a video showing a fairing’s gentle landing in Ms. Tree’s net. More likely than not, the fairing with the camera attached and the fairing that became the first to successfully land in Mr. Steven’s (now GO Ms. Tree’s) net are the same half. Regardless, the videos help document a major step forward towards SpaceX’s ultimate goal of fairing reuse.
“In a pleasant, last-minute surprise, SpaceX fairing recovery vessel Mr. Steven has departed Port Canaveral for its first Falcon fairing catch attempt in more than half a year. The speedy ship has already traveled more than 1250 km (800 mi) in ~48 hours and should soon be in position to attempt recovery of Falcon Heavy Flight 3’s payload fairing halves.
Over the last week or two, Mr. Steven has been officially renamed to GO Ms. Tree, a strong indicator that Guice Offshore (GO) – a company SpaceX is heavily involved with – has acquired the vessel from financially troubled owner/operator Sea-Tran Marine. With this likely acquisition, nearly all of SpaceX’s non-drone ship vessels are now leased from – and partially operated by – GO. The name change is undeniably bittersweet for those that have been following Mr. Steven’s fairing recovery journey from the beginning. However, it’s also more than a little fitting given that the vessel switched coasts and suffered an accident that forced SpaceX to replace the entirety of its arm-boom-net assembly. Much of Mr. Steven – now GO Ms. Tree – has been replaced in the last few months and with any luck, the vessel is better equipped than ever before to snag its first Falcon fairing(s) out of the air.”
— Teslarati.com, June 24th
As they say, the rest is history. Some 60-75 minutes after Falcon Heavy lifted off from Pad 39A on June 25th, Ms. Tree successfully caught a parasailing fairing for the first time ever, just barely snagging one of the two halves at the very edge of the ship’s net. Two days later, Ms. Tree arrived back at Port Canaveral. Another 24 hours after that, the intact, dry fairing half was safely lifted onto land and transported to a local SpaceX facility dedicated to analyzing (and eventually refurbishing) recovered Falcon fairings.
Landing on Ms. Tree pic.twitter.com/4lhPWRpaS9— Elon Musk (@elonmusk) July 4, 2019
With any luck, the successful catch will prove that the years of work have been worth it, demonstrating that fairing halves caught – rather than fished out of the ocean – are structurally sound and clean enough to be quickly and affordably reused. While Falcon fairings have been estimated to take up less than 10% of the material cost of Falcon 9 production (~$6M, $3M/half), the manufacturing apparatus needed to build them takes up a huge amount of space. Additionally, the process of oven-curing huge, monolithic carbon fiber fairings introduces fundamental constraints that physically limit how quickly they can be built.
Fairing reuse would be an invaluable benefit for SpaceX’s internal Starlink launches, of which dozens and – eventually – hundreds will be needed to build an operational constellation of satellites. Thanks to the wonders of Falcon 9 Block 5 booster reuse, the internal cost of a flight-proven booster is essentially just the cost of refurbishment and then the propellant and work-hours needed to launch it. What remains is the cost of the expendable Falcon upper stage (unlikely to be recovered or reused) and payload fairing, now reasonably consistent at landing intact on the ocean surface but yet to demonstrate practical reusability.
As proposed, SpaceX’s completed Starlink constellation represents almost 12,000 satellites. Assuming no progress is made with packing density, no larger payload fairing is developed, and Starship doesn’t reach orbit until the mid-2020s (admittedly unlikely), Starlink will require almost exactly 200 Falcon 9 launches, each carrying 60 satellites. According to Musk, despite the fact that the first 60 satellites launched were effectively advanced prototypes, the cost of launch is already more than the cost of satellite production.
Speaking at a conference in 2017, Musk noted that payload fairings cost about $6M to produce, roughly 10% of Falcon 9’s $62M list price. In 2013, Musk stated that the first stage represented less than 75% of the overall cost of Falcon 9 production, meaning that the rocket’s upper stage probably represents another 15-20% (call it a 70:20:10 split), or ~$9-12M. Conservatively assuming that the operating costs of Falcon 9 refurbishment, launch, and recovery are roughly $5M per mission, the internal cost to SpaceX for a launch with a recoverable flight-proven booster and an expended fairing and upper stage could be just $20-25M and may be even lower.


For reference, assuming 200 Falcon 9 launches, SpaceX could save nearly $600M by consistently recovering and reusing just one fairing half on average per launch, up to as much as $1.2B if both halves can be consistently recovered and reused. June 25th’s successful fairing catch is the biggest step yet in that direction and is hopefully a sign of many good things to come for SpaceX’s latest attempt at building truly reusable rockets.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla Model Y L is gaining momentum in China’s premium segment
This suggests that the addition of the Model Y L to Tesla China’s lineup will not result in a case of cannibalization, but a possible case of “premiumization” instead.
Tesla’s domestic sales in China held steady in November with around 73,000 units delivered, but a closer look at the Model Y L’s numbers hints at an emerging shift towards pricier variants that could very well be boosting average selling prices and margins.
This suggests that the addition of the Model Y L to Tesla China’s lineup will not result in a case of cannibalization, but a possible case of “premiumization” instead.
Tesla China’s November domestic numbers
Data from the a Passenger Car Association (CPCA) indicated that Tesla China saw domestic deliveries of about 73,000 vehicles in November 2025. This number included 34,000 standard Model Y units, 26,000 Model 3 units, and 13,000 Model Y L units, as per industry watchers.
This means that the Model Y L accounted for roughly 27% of Tesla China’s total Model Y sales, despite the variant carrying a ~28% premium over the base RWD Model Y that is estimated to have dominated last year’s mix.
As per industry watcher @TSLAFanMtl, this suggests that Tesla China’s sales have moved towards more premium variants this year. Thus, direct year-over-year sales comparisons might miss the bigger picture. This is true even for the regular Model Y, as another premium trim, the Long Range RWD variant, was also added to the lineup this 2025.
November 2025 momentum
While Tesla China’s overall sales this year have seen challenges, the Model Y and Model 3 have remained strong sellers in the country. This is especially impressive as the Model Y and Model 3 are premium-priced vehicles, and they compete in the world’s most competitive electric vehicle market. Tesla China is also yet to roll out the latest capabilities of FSD in China, which means that its vehicles in the country could not tap into their latest capabilities yet.
Aggregated results from November suggest that the Tesla Model Y took the crown as China’s #1 best-selling SUV during the month, with roughly 34,000 deliveries. With the Model Y L, this number is even higher. The Tesla Model 3 also had a stellar month, seeing 25,700 deliveries during November 2025.
Cybertruck
Tesla Cybertruck earns IIHS Top Safety Pick+ award
To commemorate the accolade, the official Cybertruck account celebrated the milestone on X.
The Tesla Cybertruck has achieved the Insurance Institute for Highway Safety’s (IIHS) highest honor, earning a Top Safety Pick+ rating for 2025 models built after April 2025.
The full-size electric pickup truck’s safety rating is partly due to the vehicle’s strong performance in updated crash tests, superior front crash prevention, and effective headlights, among other factors. To commemorate the accolade, the official Cybertruck account celebrated the milestone on X.
Cybertruck’s IIHS rating
As per the IIHS, beginning with 2025 Cybertruck models built after April 2025, changes were made to the front underbody structure and footwell to improve occupant safety in driver-side and passenger-side small overlap front crashes. The moderate overlap front test earned a good rating, and the updated side impact test also received stellar marks.
The Cybertruck’s front crash prevention earned a good rating in pedestrian scenarios, with the standard Collision Avoidance Assist avoiding collisions in day and night tests across child, adult crossing, and parallel paths. Headlights with high-beam assist compensated for limitations, contributing to the top award.
Safest and most autonomous pickup
The Cybertruck is one of only two full-size pickups to receive the IIHS’ Top Safety Pick + rating. It is also the only one equipped with advanced self-driving features via Tesla’s Full Self-Driving (Supervised) system. Thanks to FSD, the Cybertruck can navigate inner city streets and highways on its own with minimal supervision, adding a layer of safety beyond passive crash protection.
Community reactions poured in, with users praising the vehicle’s safety rating amidst skepticism from critics. Tesla itself highlighted this by starting its X post with a short clip of a Cybertruck critic who predicted that the vehicle will likely not pass safety tests. The only question now is, of course, if the vehicle’s Top Safety Pick+ rating from the IIHS will help the Cybertruck improve its sales.
News
Tesla stands to gain from Ford’s decision to ditch large EVs
Tesla is perhaps the biggest beneficiary of Ford’s decision, especially as it will no longer have to deal with the sole pure EV pickup that outsold it from time to time: the F-150 Lightning.
Ford’s recent decision to abandon production of the all-electric Ford F-150 Lightning after the 2025 model year should yield some advantages for Tesla.
The Detroit-based automaker’s pivot away from large EVs and toward hybrids and extended-range EVs that come with a gas generator is proof that sustainable powertrains are easy on paper, but hard in reality.
Tesla is perhaps the biggest beneficiary of Ford’s decision, especially as it will no longer have to deal with the sole pure EV pickup that outsold it from time to time: the F-150 Lightning.
Here’s why:
Reduced Competition in the Electric Pickup Segment
The F-150 Lightning was the Tesla Cybertruck’s primary and direct rival in the full-size electric pickup market in the United States. With Ford’s decision to end pure EV production of its best-selling truck’s electric version and shifting to hybrids/EREVs, the Cybertruck faces significantly less competition.

Credit: Tesla
This could drive more fleet and retail buyers toward the Cybertruck, especially those committed to fully electric vehicles without a gas generator backup.
Strengthened Market Leadership and Brand Perception in Pure EVs
Ford’s pullback from large EVs–citing unprofitability and lack of demand for EVs of that size–highlights the challenges legacy automakers face in scaling profitable battery-electric vehicles.
Tesla, as the established leader with efficient production and vertical integration, benefits from reinforced perception as the most viable and committed pure EV manufacturer.

Credit: Tesla
This can boost consumer confidence in Tesla’s long-term ecosystem over competitors retreating to hybrids. With Ford making this move, it is totally reasonable that some car buyers could be reluctant to buy from other legacy automakers.
Profitability is a key reason companies build cars; they’re businesses, and they’re there to make money.
However, Ford’s new strategy could plant a seed in the head of some who plan to buy from companies like General Motors, Stellantis, or others, who could have second thoughts. With this backtrack in EVs, other things, like less education on these specific vehicles to technicians, could make repairs more costly and tougher to schedule.
Potential Increases in Market Share for Large EVs
Interestingly, this could play right into the hands of Tesla fans who have been asking for the company to make a larger EV, specifically a full-size SUV.
Customers seeking large, high-capability electric trucks or SUVs could now look to Tesla for its Cybertruck or potentially a future vehicle release, which the company has hinted at on several occasions this year.
With Ford reallocating resources away from large pure EVs and taking a $19.5 billion charge, Tesla stands to capture a larger slice of the remaining demand in this segment without a major U.S. competitor aggressively pursuing it.