Connect with us

News

SpaceX’s Falcon Heavy fairing tries to enter hyperspace, lands in net in new videos

SpaceX's first successful Falcon fairing catch was preceded by a spectacular light show as the fairing reentered Earth's atmosphere at hypersonic velocities. (SpaceX/Teslarati)

Published

on

SpaceX and CEO Elon Musk have released videos offering an extended look at the unexpectedly dramatic conditions Falcon payload fairings are subjected to during atmospheric reentry, as well as the first successful landing in GO Ms. Tree’s net.

Captured via an onboard GoPro camera during Falcon Heavy’s June 25th launch of the USAF Space Test Program-2 (STP-2) mission, the minute-long cut shows off a light show more indicative of a spacecraft entering hyperspace than the slightly more mundane reality. Shortly after SpaceX posted the reentry video, CEO Elon Musk followed up with a video showing a fairing’s gentle landing in Ms. Tree’s net. More likely than not, the fairing with the camera attached and the fairing that became the first to successfully land in Mr. Steven’s (now GO Ms. Tree’s) net are the same half. Regardless, the videos help document a major step forward towards SpaceX’s ultimate goal of fairing reuse.

“In a pleasant, last-minute surprise, SpaceX fairing recovery vessel Mr. Steven has departed Port Canaveral for its first Falcon fairing catch attempt in more than half a year. The speedy ship has already traveled more than 1250 km (800 mi) in ~48 hours and should soon be in position to attempt recovery of Falcon Heavy Flight 3’s payload fairing halves.

Over the last week or two, Mr. Steven has been officially renamed to GO Ms. Tree, a strong indicator that Guice Offshore (GO) – a company SpaceX is heavily involved with – has acquired the vessel from financially troubled owner/operator Sea-Tran Marine. With this likely acquisition, nearly all of SpaceX’s non-drone ship vessels are now leased from – and partially operated by – GO. The name change is undeniably bittersweet for those that have been following Mr. Steven’s fairing recovery journey from the beginning. However, it’s also more than a little fitting given that the vessel switched coasts and suffered an accident that forced SpaceX to replace the entirety of its arm-boom-net assembly. Much of Mr. Steven – now GO Ms. Tree – has been replaced in the last few months and with any luck, the vessel is better equipped than ever before to snag its first Falcon fairing(s) out of the air.”


— Teslarati.com, June 24th

As they say, the rest is history. Some 60-75 minutes after Falcon Heavy lifted off from Pad 39A on June 25th, Ms. Tree successfully caught a parasailing fairing for the first time ever, just barely snagging one of the two halves at the very edge of the ship’s net. Two days later, Ms. Tree arrived back at Port Canaveral. Another 24 hours after that, the intact, dry fairing half was safely lifted onto land and transported to a local SpaceX facility dedicated to analyzing (and eventually refurbishing) recovered Falcon fairings.

With any luck, the successful catch will prove that the years of work have been worth it, demonstrating that fairing halves caught – rather than fished out of the ocean – are structurally sound and clean enough to be quickly and affordably reused. While Falcon fairings have been estimated to take up less than 10% of the material cost of Falcon 9 production (~$6M, $3M/half), the manufacturing apparatus needed to build them takes up a huge amount of space. Additionally, the process of oven-curing huge, monolithic carbon fiber fairings introduces fundamental constraints that physically limit how quickly they can be built.

Fairing reuse would be an invaluable benefit for SpaceX’s internal Starlink launches, of which dozens and – eventually – hundreds will be needed to build an operational constellation of satellites. Thanks to the wonders of Falcon 9 Block 5 booster reuse, the internal cost of a flight-proven booster is essentially just the cost of refurbishment and then the propellant and work-hours needed to launch it. What remains is the cost of the expendable Falcon upper stage (unlikely to be recovered or reused) and payload fairing, now reasonably consistent at landing intact on the ocean surface but yet to demonstrate practical reusability.

As proposed, SpaceX’s completed Starlink constellation represents almost 12,000 satellites. Assuming no progress is made with packing density, no larger payload fairing is developed, and Starship doesn’t reach orbit until the mid-2020s (admittedly unlikely), Starlink will require almost exactly 200 Falcon 9 launches, each carrying 60 satellites. According to Musk, despite the fact that the first 60 satellites launched were effectively advanced prototypes, the cost of launch is already more than the cost of satellite production.

Speaking at a conference in 2017, Musk noted that payload fairings cost about $6M to produce, roughly 10% of Falcon 9’s $62M list price. In 2013, Musk stated that the first stage represented less than 75% of the overall cost of Falcon 9 production, meaning that the rocket’s upper stage probably represents another 15-20% (call it a 70:20:10 split), or ~$9-12M. Conservatively assuming that the operating costs of Falcon 9 refurbishment, launch, and recovery are roughly $5M per mission, the internal cost to SpaceX for a launch with a recoverable flight-proven booster and an expended fairing and upper stage could be just $20-25M and may be even lower.

Advertisement
A general overview of Starlink’s bus, launch stacking, and solar array. (SpaceX)
SpaceX’s first Starlink launch was also Falcon 9 booster B1049’s third launch ever.(SpaceX/Teslarati)

For reference, assuming 200 Falcon 9 launches, SpaceX could save nearly $600M by consistently recovering and reusing just one fairing half on average per launch, up to as much as $1.2B if both halves can be consistently recovered and reused. June 25th’s successful fairing catch is the biggest step yet in that direction and is hopefully a sign of many good things to come for SpaceX’s latest attempt at building truly reusable rockets.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor

Published

on

Tesla has officially launched public Robotaxi rides in Austin, Texas, without a Safety Monitor in the vehicle, marking the first time the company has removed anyone from the vehicle other than the rider.

The Safety Monitor has been present in Tesla Robotaxis in Austin since its launch last June, maintaining safety for passengers and other vehicles, and was placed in the passenger’s seat.

Tesla planned to remove the Safety Monitor at the end of 2025, but it was not quite ready to do so. Now, in January, riders are officially reporting that they are able to hail a ride from a Model Y Robotaxi without anyone in the vehicle:

Tesla started testing this internally late last year and had several employees show that they were riding in the vehicle without anyone else there to intervene in case of an emergency.

Tesla has now expanded that program to the public. It is not active in the entire fleet, but there are a “few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors,” Ashok Elluswamy said:

Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing

The Robotaxi program also operates in the California Bay Area, where the fleet is much larger, but Safety Monitors are placed in the driver’s seat and utilize Full Self-Driving, so it is essentially the same as an Uber driver using a Tesla with FSD.

In Austin, the removal of Safety Monitors marks a substantial achievement for Tesla moving forward. Now that it has enough confidence to remove Safety Monitors from Robotaxis altogether, there are nearly unlimited options for the company in terms of expansion.

While it is hoping to launch the ride-hailing service in more cities across the U.S. this year, this is a much larger development than expansion, at least for now, as it is the first time it is performing driverless rides in Robotaxi anywhere in the world for the public to enjoy.

Continue Reading

Investor's Corner

Tesla Earnings Call: Top 5 questions investors are asking

Published

on

(Credit: Tesla)

Tesla has scheduled its Earnings Call for Q4 and Full Year 2025 for next Wednesday, January 28, at 5:30 p.m. EST, and investors are already preparing to get some answers from executives regarding a wide variety of topics.

The company accepts several questions from retail investors through the platform Say, which then allows shareholders to vote on the best questions.

Tesla does not answer anything regarding future product releases, but they are willing to shed light on current timelines, progress of certain projects, and other plans.

There are five questions that range over a variety of topics, including SpaceX, Full Self-Driving, Robotaxi, and Optimus, which are currently in the lead to be asked and potentially answered by Elon Musk and other Tesla executives:

SpaceX IPO is coming, CEO Elon Musk confirms

  1. You once said: Loyalty deserves loyalty. Will long-term Tesla shareholders still be prioritized if SpaceX does an IPO?
    1. Our Take – With a lot of speculation regarding an incoming SpaceX IPO, Tesla investors, especially long-term ones, should be able to benefit from an early opportunity to purchase shares. This has been discussed endlessly over the past year, and we must be getting close to it.
  2. When is FSD going to be 100% unsupervised?
    1. Our Take – Musk said today that this is essentially a solved problem, and it could be available in the U.S. by the end of this year.
  3. What is the current bottleneck to increase Robotaxi deployment & personal use unsupervised FSD? The safety/performance of the most recent models or people to monitor robots, robotaxis, in-car, or remotely? Or something else?
    1. Our Take – The bottleneck seems to be based on data, which Musk said Tesla needs 10 billion miles of data to achieve unsupervised FSD. Once that happens, regulatory issues will be what hold things up from moving forward.
  4. Regarding Optimus, could you share the current number of units deployed in Tesla factories and actively performing production tasks? What specific roles or operations are they handling, and how has their integration impacted factory efficiency or output?
    1. Our Take – Optimus is going to have a larger role in factories moving forward, and later this year, they will have larger responsibilities.
  5. Can you please tie purchased FSD to our owner accounts vs. locked to the car? This will help us enjoy it in any Tesla we drive/buy and reward us for hanging in so long, some of us since 2017.
    1. Our Take – This is a good one and should get us some additional information on the FSD transfer plans and Subscription-only model that Tesla will adopt soon.

Tesla will have its Earnings Call on Wednesday, January 28.

Continue Reading

Elon Musk

Elon Musk shares incredible detail about Tesla Cybercab efficiency

Published

on

(Credit: Tesla North America | X)

Elon Musk shared an incredible detail about Tesla Cybercab’s potential efficiency, as the company has hinted in the past that it could be one of the most affordable vehicles to operate from a per-mile basis.

ARK Invest released a report recently that shed some light on the potential incremental cost per mile of various Robotaxis that will be available on the market in the coming years.

The Cybercab, which is detailed for the year 2030, has an exceptionally low cost of operation, which is something Tesla revealed when it unveiled the vehicle a year and a half ago at the “We, Robot” event in Los Angeles.

Musk said on numerous occasions that Tesla plans to hit the $0.20 cents per mile mark with the Cybercab, describing a “clear path” to achieving that figure and emphasizing it is the “full considered” cost, which would include energy, maintenance, cleaning, depreciation, and insurance.

ARK’s report showed that the Cybercab would be roughly half the cost of the Waymo 6th Gen Robotaxi in 2030, as that would come in at around $0.40 per mile all in. Cybercab, at scale, would be at $0.20.

Credit: ARK Invest

This would be a dramatic decrease in the cost of operation for Tesla, and the savings would then be passed on to customers who choose to utilize the ride-sharing service for their own transportation needs.

The U.S. average cost of new vehicle ownership is about $0.77 per mile, according to AAA. Meanwhile, Uber and Lyft rideshares often cost between $1 and $4 per mile, while Waymo can cost between $0.60 and $1 or more per mile, according to some estimates.

Tesla’s engineering has been the true driver of these cost efficiencies, and its focus on creating a vehicle that is as cost-effective to operate as possible is truly going to pay off as the vehicle begins to scale. Tesla wants to get the Cybercab to about 5.5-6 miles per kWh, which has been discussed with prototypes.

Additionally, fewer parts due to the umboxed manufacturing process, a lower initial cost, and eliminating the need to pay humans for their labor would also contribute to a cheaper operational cost overall. While aspirational, all of the ingredients for this to be a real goal are there.

It may take some time as Tesla needs to hammer the manufacturing processes, and Musk has said there will be growing pains early. This week, he said regarding the early production efforts:

“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”

Continue Reading