

News
SpaceX’s Falcon Heavy fairing tries to enter hyperspace, lands in net in new videos
SpaceX and CEO Elon Musk have released videos offering an extended look at the unexpectedly dramatic conditions Falcon payload fairings are subjected to during atmospheric reentry, as well as the first successful landing in GO Ms. Tree’s net.
Captured via an onboard GoPro camera during Falcon Heavy’s June 25th launch of the USAF Space Test Program-2 (STP-2) mission, the minute-long cut shows off a light show more indicative of a spacecraft entering hyperspace than the slightly more mundane reality. Shortly after SpaceX posted the reentry video, CEO Elon Musk followed up with a video showing a fairing’s gentle landing in Ms. Tree’s net. More likely than not, the fairing with the camera attached and the fairing that became the first to successfully land in Mr. Steven’s (now GO Ms. Tree’s) net are the same half. Regardless, the videos help document a major step forward towards SpaceX’s ultimate goal of fairing reuse.
“In a pleasant, last-minute surprise, SpaceX fairing recovery vessel Mr. Steven has departed Port Canaveral for its first Falcon fairing catch attempt in more than half a year. The speedy ship has already traveled more than 1250 km (800 mi) in ~48 hours and should soon be in position to attempt recovery of Falcon Heavy Flight 3’s payload fairing halves.
Over the last week or two, Mr. Steven has been officially renamed to GO Ms. Tree, a strong indicator that Guice Offshore (GO) – a company SpaceX is heavily involved with – has acquired the vessel from financially troubled owner/operator Sea-Tran Marine. With this likely acquisition, nearly all of SpaceX’s non-drone ship vessels are now leased from – and partially operated by – GO. The name change is undeniably bittersweet for those that have been following Mr. Steven’s fairing recovery journey from the beginning. However, it’s also more than a little fitting given that the vessel switched coasts and suffered an accident that forced SpaceX to replace the entirety of its arm-boom-net assembly. Much of Mr. Steven – now GO Ms. Tree – has been replaced in the last few months and with any luck, the vessel is better equipped than ever before to snag its first Falcon fairing(s) out of the air.”
— Teslarati.com, June 24th
As they say, the rest is history. Some 60-75 minutes after Falcon Heavy lifted off from Pad 39A on June 25th, Ms. Tree successfully caught a parasailing fairing for the first time ever, just barely snagging one of the two halves at the very edge of the ship’s net. Two days later, Ms. Tree arrived back at Port Canaveral. Another 24 hours after that, the intact, dry fairing half was safely lifted onto land and transported to a local SpaceX facility dedicated to analyzing (and eventually refurbishing) recovered Falcon fairings.
Landing on Ms. Tree pic.twitter.com/4lhPWRpaS9— Elon Musk (@elonmusk) July 4, 2019
With any luck, the successful catch will prove that the years of work have been worth it, demonstrating that fairing halves caught – rather than fished out of the ocean – are structurally sound and clean enough to be quickly and affordably reused. While Falcon fairings have been estimated to take up less than 10% of the material cost of Falcon 9 production (~$6M, $3M/half), the manufacturing apparatus needed to build them takes up a huge amount of space. Additionally, the process of oven-curing huge, monolithic carbon fiber fairings introduces fundamental constraints that physically limit how quickly they can be built.
Fairing reuse would be an invaluable benefit for SpaceX’s internal Starlink launches, of which dozens and – eventually – hundreds will be needed to build an operational constellation of satellites. Thanks to the wonders of Falcon 9 Block 5 booster reuse, the internal cost of a flight-proven booster is essentially just the cost of refurbishment and then the propellant and work-hours needed to launch it. What remains is the cost of the expendable Falcon upper stage (unlikely to be recovered or reused) and payload fairing, now reasonably consistent at landing intact on the ocean surface but yet to demonstrate practical reusability.
As proposed, SpaceX’s completed Starlink constellation represents almost 12,000 satellites. Assuming no progress is made with packing density, no larger payload fairing is developed, and Starship doesn’t reach orbit until the mid-2020s (admittedly unlikely), Starlink will require almost exactly 200 Falcon 9 launches, each carrying 60 satellites. According to Musk, despite the fact that the first 60 satellites launched were effectively advanced prototypes, the cost of launch is already more than the cost of satellite production.
Speaking at a conference in 2017, Musk noted that payload fairings cost about $6M to produce, roughly 10% of Falcon 9’s $62M list price. In 2013, Musk stated that the first stage represented less than 75% of the overall cost of Falcon 9 production, meaning that the rocket’s upper stage probably represents another 15-20% (call it a 70:20:10 split), or ~$9-12M. Conservatively assuming that the operating costs of Falcon 9 refurbishment, launch, and recovery are roughly $5M per mission, the internal cost to SpaceX for a launch with a recoverable flight-proven booster and an expended fairing and upper stage could be just $20-25M and may be even lower.


For reference, assuming 200 Falcon 9 launches, SpaceX could save nearly $600M by consistently recovering and reusing just one fairing half on average per launch, up to as much as $1.2B if both halves can be consistently recovered and reused. June 25th’s successful fairing catch is the biggest step yet in that direction and is hopefully a sign of many good things to come for SpaceX’s latest attempt at building truly reusable rockets.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla is bringing back something it took from the Model 3…for a price
“Modify your Model 3 by replacing the turn signal buttons on your steering wheel with turn signal stalks. This modification is included in the purchase price and is installed by a Tesla Service Center.”

Tesla is bringing back the Model 3’s turn signal stalk in China after removing the part with the refresh of the all-electric sedan early last year.
However, it is going to cost you.
In 2024, Tesla launched the Model 3 “Highland,” a refreshed version of the vehicle that included several large-scale changes. One of the most noticeable was the lack of a turn signal stalk, something the company chose to remove and instead implement turn signal buttons on the steering wheel.
The buttons were met with mixed reviews, as some drivers complained that it was too difficult to get used to them. Others had no problem with the change, noting that it was slightly more convenient for them or that they enjoyed the minimalistic look.
Now, Tesla is offering Model 3 owners in China the opportunity to replace the stalk for a price of ¥ 2,499, or about $350:
“Modify your Model 3 by replacing the turn signal buttons on your steering wheel with turn signal stalks. This modification is included in the purchase price and is installed by a Tesla Service Center.”
Tesla notes on its website that the service is available for Model 3 vehicles without stalks manufactured after February 7, 2025. Any car without a stalk that was manufactured before that date will have the service available to them in the future.
Installation can be performed at a Service Center or by the owner. However, Tesla notes that it is not responsible for any damages resulting from self-installation and recommends that the part be put in by an employee.
The cockpit of the Tesla lineup has been under intense scrutiny by the company in recent years. After a few changes to things like the stalk, steering wheel shape, and others, Tesla has usually given drivers the chance to have things reverted back to their preferences if they want.
They did this for the Model S and Model X a few years ago after implementing the yoke steering wheel.
Tesla Steering Wheel Retrofits have started, and it’s easy to get rid of your yoke
The stalk was not supposed to be removed from the Model 3 and Model Y, but Tesla chose to do so with the refresh last year.
It seems the minimalization of the cockpit, overall, is a move that prepares drivers for autonomy, as eventually, Teslas will be void of pedals, steering wheels, and any other apparatus that are used to control the car.
News
Tesla launches new loaner program that owners will love
Tesla is now giving owners the opportunity to rent a vehicle from them, and it includes a few very attractive features that will have you second-guessing another loaner from insurance.

Tesla has launched a new loaner program that owners will love, as it resolves some concerns over a replacement vehicle while it is being repaired.
Earlier this week, Tesla launched the option to rent a Tesla loaner vehicle for just $45 per day if your vehicle is in Collision Repair. Collision repairs did not formerly warrant the issuance of loaner vehicles, as the insurance provider of the car owner would provide transportation arrangements.
Tesla is now giving owners the opportunity to rent a vehicle from them, and it includes a few very attractive features that will have you second-guessing another loaner from insurance.
The Tesla you rent while your car is in collision repair will come with free Full Self-Driving, free Supercharging, and free toll coverage, no small print included.
🚨 Tesla is offering loaner vehicle for $45/day if your car is in collision repair for body work.
It includes Free Full Self-Driving, Free Supercharging, and Free Tolls https://t.co/cMYxIb1MLF pic.twitter.com/n0Of4OTLvt
— TESLARATI (@Teslarati) August 18, 2025
All things considered, this is a great deal for those who require a car for transportation while their car is being repaired.
The cost of Supercharging and Full Self-Driving alone would warrant the $45 per day price tag. Add in the tolls for those who commute on turnpikes for work or are planning an extensive trip that would require it, and it truly becomes an even more attractive deal.
Tesla has done a good job at improving its Service division over the past few years, and it truly needed it. In hopes of launching an F1-style service experience, Tesla started doing away with some of its perks, including loaner vehicles for single-day visits and even Uber credits.
Tesla’s ‘F1’ Service strategy eliminates same-day loaner vehicles, Uber credits
However, it has listened to the complaints of its owners and tried to cater an experience that is more advantageous and less of a hassle. It’s already made tremendous steps in the past few years, and this is the icing on the cake.
Elon Musk
SpaceX Starship Flight 10: What to expect
SpaceX implemented hardware and operational changes aimed at improving Starship’s reliability.

SpaceX is preparing to launch the tenth test flight of its Starship vehicle as early as Sunday, August 24, with the launch window opening at 6:30 p.m. CT.
The mission follows investigations into anomalies from earlier flights, including the loss of Starship on its ninth test and a Ship 36 static fire issue. SpaceX has since implemented hardware and operational changes aimed at improving Starship’s reliability.
Booster landing burns and flight experiments
The upcoming Starship Flight 10 will expand Super Heavy’s flight envelope with multiple landing burn trials. Following stage separation, the booster will attempt a controlled flip and boostback burn before heading to an offshore splashdown in the Gulf of America. One of the three center engines typically used for landing will be intentionally disabled, allowing engineers to evaluate whether a backup engine can complete the maneuver, according to a post from SpaceX.
The booster will also transition to a two-engine configuration for the final phase, hovering briefly above the water before shutdown and drop. These experiments are designed to simulate off-nominal scenarios and generate real-world data on performance under varying conditions, while maximizing propellant use during ascent to enable heavier payloads.
Starship upper stage reentry tests
The Starship upper stage will attempt multiple in-space objectives, including deployment of eight Starlink simulators and a planned Raptor engine relight. SpaceX will also continue testing reentry systems with several modifications. A section of thermal protection tiles has been removed to expose vulnerable areas, while new metallic tile designs, including one with active cooling, will be trialed.
Catch fittings have been installed to evaluate their thermal and structural performance, and adjustments to the tile line will address hot spots observed on Flight 6. The reentry profile is expected to push the structural limits of Starship’s rear flaps at maximum entry pressure.
SpaceX says lessons from these tests are critical to refining the next-generation Starship and Super Heavy vehicles. With Starfactory production ramping in Texas and new launch infrastructure under development in Florida, the company is pushing to hit its goal of achieving a fully reusable orbital launch system.
-
Elon Musk2 weeks ago
Elon Musk confirms Tesla AI6 chip is Project Dojo’s successor
-
Elon Musk1 day ago
Elon Musk takes aim at Bill Gates’ Microsoft with new AI venture “Macrohard”
-
News2 weeks ago
Tesla Model Y L reportedly entered mass production in Giga Shanghai
-
Cybertruck2 weeks ago
Tesla’s new upgrade makes the Cybertruck extra-terrestrial
-
News2 weeks ago
Elon Musk reaffirms Tesla Semi mass production in 2026
-
News6 days ago
Tesla clarifies LA car carrier fire started in diesel semi, not EV batteries
-
Elon Musk2 weeks ago
Tesla CEO Elon Musk confirms Robotaxi is opening to the public: here’s when
-
Elon Musk2 weeks ago
Elon Musk is stepping up for Tesla Service in a big way