Connect with us

News

SpaceX’s Falcon Heavy fairing tries to enter hyperspace, lands in net in new videos

SpaceX's first successful Falcon fairing catch was preceded by a spectacular light show as the fairing reentered Earth's atmosphere at hypersonic velocities. (SpaceX/Teslarati)

Published

on

SpaceX and CEO Elon Musk have released videos offering an extended look at the unexpectedly dramatic conditions Falcon payload fairings are subjected to during atmospheric reentry, as well as the first successful landing in GO Ms. Tree’s net.

Captured via an onboard GoPro camera during Falcon Heavy’s June 25th launch of the USAF Space Test Program-2 (STP-2) mission, the minute-long cut shows off a light show more indicative of a spacecraft entering hyperspace than the slightly more mundane reality. Shortly after SpaceX posted the reentry video, CEO Elon Musk followed up with a video showing a fairing’s gentle landing in Ms. Tree’s net. More likely than not, the fairing with the camera attached and the fairing that became the first to successfully land in Mr. Steven’s (now GO Ms. Tree’s) net are the same half. Regardless, the videos help document a major step forward towards SpaceX’s ultimate goal of fairing reuse.

“In a pleasant, last-minute surprise, SpaceX fairing recovery vessel Mr. Steven has departed Port Canaveral for its first Falcon fairing catch attempt in more than half a year. The speedy ship has already traveled more than 1250 km (800 mi) in ~48 hours and should soon be in position to attempt recovery of Falcon Heavy Flight 3’s payload fairing halves.

Over the last week or two, Mr. Steven has been officially renamed to GO Ms. Tree, a strong indicator that Guice Offshore (GO) – a company SpaceX is heavily involved with – has acquired the vessel from financially troubled owner/operator Sea-Tran Marine. With this likely acquisition, nearly all of SpaceX’s non-drone ship vessels are now leased from – and partially operated by – GO. The name change is undeniably bittersweet for those that have been following Mr. Steven’s fairing recovery journey from the beginning. However, it’s also more than a little fitting given that the vessel switched coasts and suffered an accident that forced SpaceX to replace the entirety of its arm-boom-net assembly. Much of Mr. Steven – now GO Ms. Tree – has been replaced in the last few months and with any luck, the vessel is better equipped than ever before to snag its first Falcon fairing(s) out of the air.”


— Teslarati.com, June 24th

As they say, the rest is history. Some 60-75 minutes after Falcon Heavy lifted off from Pad 39A on June 25th, Ms. Tree successfully caught a parasailing fairing for the first time ever, just barely snagging one of the two halves at the very edge of the ship’s net. Two days later, Ms. Tree arrived back at Port Canaveral. Another 24 hours after that, the intact, dry fairing half was safely lifted onto land and transported to a local SpaceX facility dedicated to analyzing (and eventually refurbishing) recovered Falcon fairings.

With any luck, the successful catch will prove that the years of work have been worth it, demonstrating that fairing halves caught – rather than fished out of the ocean – are structurally sound and clean enough to be quickly and affordably reused. While Falcon fairings have been estimated to take up less than 10% of the material cost of Falcon 9 production (~$6M, $3M/half), the manufacturing apparatus needed to build them takes up a huge amount of space. Additionally, the process of oven-curing huge, monolithic carbon fiber fairings introduces fundamental constraints that physically limit how quickly they can be built.

Fairing reuse would be an invaluable benefit for SpaceX’s internal Starlink launches, of which dozens and – eventually – hundreds will be needed to build an operational constellation of satellites. Thanks to the wonders of Falcon 9 Block 5 booster reuse, the internal cost of a flight-proven booster is essentially just the cost of refurbishment and then the propellant and work-hours needed to launch it. What remains is the cost of the expendable Falcon upper stage (unlikely to be recovered or reused) and payload fairing, now reasonably consistent at landing intact on the ocean surface but yet to demonstrate practical reusability.

As proposed, SpaceX’s completed Starlink constellation represents almost 12,000 satellites. Assuming no progress is made with packing density, no larger payload fairing is developed, and Starship doesn’t reach orbit until the mid-2020s (admittedly unlikely), Starlink will require almost exactly 200 Falcon 9 launches, each carrying 60 satellites. According to Musk, despite the fact that the first 60 satellites launched were effectively advanced prototypes, the cost of launch is already more than the cost of satellite production.

Speaking at a conference in 2017, Musk noted that payload fairings cost about $6M to produce, roughly 10% of Falcon 9’s $62M list price. In 2013, Musk stated that the first stage represented less than 75% of the overall cost of Falcon 9 production, meaning that the rocket’s upper stage probably represents another 15-20% (call it a 70:20:10 split), or ~$9-12M. Conservatively assuming that the operating costs of Falcon 9 refurbishment, launch, and recovery are roughly $5M per mission, the internal cost to SpaceX for a launch with a recoverable flight-proven booster and an expended fairing and upper stage could be just $20-25M and may be even lower.

Advertisement
A general overview of Starlink’s bus, launch stacking, and solar array. (SpaceX)
SpaceX’s first Starlink launch was also Falcon 9 booster B1049’s third launch ever.(SpaceX/Teslarati)

For reference, assuming 200 Falcon 9 launches, SpaceX could save nearly $600M by consistently recovering and reusing just one fairing half on average per launch, up to as much as $1.2B if both halves can be consistently recovered and reused. June 25th’s successful fairing catch is the biggest step yet in that direction and is hopefully a sign of many good things to come for SpaceX’s latest attempt at building truly reusable rockets.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

The truth about Tesla ‘Mad Max’ mode from an actual user

Some people might see “Mad Max” as an extension of their daily driving.

For me, I did not see it that way. I saw it as a useful tool for certain situations, but it was certainly not something I could compare to my personal driving style.

But that does not mean that it’s wrong.

Published

on

Credit: Teslarati

There have been many headlines about Tesla’s new “Mad Max” mode, but many of those writing about the “dangerous” and “controversial” mode have probably never used it.

As a writer, I write about topics I do not have firsthand experience with, but the job requires me to take a fair stance and report what is known. The problem is the nature of driving and driving modes, specifically, is subjective.

Some people might see “Mad Max” as an extension of their daily driving.

For me, I did not see it that way. I saw it as a useful tool for certain situations, but it was certainly not something I could compare to my personal driving style.

But that does not mean that it’s wrong.

NHTSA Probes Tesla Over “Mad Max”

Last week, the NHTSA launched a bit of a probe into Mad Max mode, requesting additional information on the Speed Profile and reiterating that the driver of the car is still required to be in ultimate control.

Tesla ‘Mad Max’ gets its first bit of regulatory attention

It’s important to keep the latter portion of that sentence in mind for the true thesis of this piece.

Now, it is no surprise to me that Mad Max garnered attention from regulatory agencies, as it is definitely a more spirited driving profile than the others.

Is Mad Max That Big of a Deal?

Regulatory agencies are responsible for keeping people safe, and it is important to note that their control is somewhat necessary. However, this type of drive mode is optional, requires the driver’s attention, and should be used responsibly for safe travel.

Playing Devil’s Advocate, how is Mad Max any different than the performance modes that some sports cars have? Because they require the driver to operate fully, and they are not semi-autonomous like Tesla can offer with Mad Max in Full Self-Driving (Supervised), are they safer?

The argument here really comes down to whether FSD is being used responsibly and correctly; any accelerated drive mode becomes more of a risk if the vehicle operator is not paying attention. This applies to any car company or drive mode they choose to use on their cars.

My Personal Experience with Mad Max

I have used Mad Max probably ten times since it rolled out to Early Access Program (EAP) members a few weeks ago.

I’ll admit: it did a lot of things I would never do driving a car manually. It passed people on the right. It was the fastest vehicle on the interstate, at least until I crossed into Maryland. Then, it seemed to be just another car on the road.

It drove quickly, and not so fast that I felt concerned for my safety, which I never feared for, but fast enough that, at certain points, I was concerned that a cop would pull me over. I never encountered that scenario, but I wouldn’t be surprised if it resulted in some tickets.

With that being said, I don’t particularly think I’d use Mad Max in more than a handful of applications: driving the Baltimore Beltway would be one instance, navigating traffic in Baltimore, Philadelphia, or Pittsburgh during heavy traffic, or cruising on I-95, where cars routinely are going 100 MPH, much faster than Mad Max would ever travel.

Is it too quick for me in residential settings? For me, yes. Is it faster than every human driving on those roads? Absolutely not. In my experience, it is quicker than some, slower than others, just like any other Speed Mode Tesla offers, even Sloth, which refuses to go over the posted speed limit.

I think it’s wrong to sit here and act as if Mad Max is some incredibly dangerous and life-threatening hazard. If a driver is uncomfortable with the maneuvers or speed, they do not have to use it. However, it is no different from how many other cars travel on the road; it is far from an anomaly.

Tesla FSD’s new Mad Max mode is getting rave reviews from users

With that being said, it will be interesting to see if the NHTSA does anything about Mad Max, whether it will require Tesla to “nerf” the Speed Profile, or remove it altogether. It’s also important to note that this is my personal experience with Mad Max, and what I’ve experienced might differ from others’.

I would love to hear your thoughts on how Mad Max has driven for you, or your impressions of it.

Continue Reading

News

Tesla prepares for full-throttle manufacturing of major product

Tesla has the second quarter of 2026 as its projected start date for Cybercab production. It also plans to launch Semi and Megapack 3 for “volume production” starting next year, which will also be two major contributors to the company.

Published

on

(Credit: Tesla North America | X)

Tesla is preparing for a full-throttle manufacturing effort of potentially its biggest product in company history, job postings on the company’s website show.

In preparation for its foray into fully autonomous travel, Tesla is gearing up for Cybercab manufacturing with 30 job postings, ranging from repair technicians to manufacturing specialists.

Elon Musk sets definitive Tesla Cybercab production date and puts a rumor to rest

The jobs are all located in Austin, Texas, where the company’s Gigafactory Texas facility is located. This is where Cybercab production is going to take place.

Tesla has made major strides in the Cybercab project over the past few months, including launching the vehicle on the Fremont Test Track in California and conducting crash testing at Gigafactory Texas.

All of these indicate the company is preparing for an imminent production effort of the vehicle, which, as Elon Musk said during last week’s Earnings Call, will be void of a steering wheel or pedals.

Tesla has the second quarter of 2026 as its projected start date for Cybercab production. It also plans to launch Semi and Megapack 3 for “volume production” starting next year, which will also be two major contributors to the company.

Musk spoke in great detail during the Earnings Call last week about Cybercab’s potential to change the grand picture of the automotive market, comparing other vehicles in the Tesla lineup to “a little bit of the horse-carriage thing.”

He said:

“That’s really a vehicle that’s optimized for full autonomy. It, in fact, does not have a steering wheel or pedals and is really an enduring optimization on minimizing cost per mile for fully considered cost per mile of operation. For our other vehicles, they still have a little bit of the horse carriage thing going on where, obviously, if you’ve got steering wheels and pedals and you’re designing a car that people might want to go very direct past acceleration and tight cornering, like high-performance cars, then you’re going to design a different car than one that is optimized for a comfortable ride and doesn’t expect to go past sort of 85 or 90 miles an hour.”

Cybercab production is imminent, given the job postings and the company’s proposed timeline for manufacturing to begin. Of course, there is always the potential that Tesla is late to the party, as it has been with other projects.

Continue Reading

Elon Musk

xAI’s Grokipedia goes live, gets praise from Wikipedia co-founder

xAI’s latest creation, Grokipedia, has gone live, and even if it’s only at Version 0.1, it is already receiving positive reviews from some users.

Published

on

Credit: xAI/X

xAI’s latest creation, Grokipedia, has gone live, and even if it’s only at Version 0.1, it is already receiving positive reviews from some users. These include Larry Sanger, the co-founder of Wikipedia, the world’s largest online encyclopedia, which has become quite controversial in recent years over accusations of bias.

Grokipedia launches

Immediately after Grokipedia went live, the AI-powered Wikipedia alternative was tested by numerous users. So far, a good number of testers have responded positively to the online encyclopedia, with many observing that Grokipedia does tend to be more neutral than Wikipedia. This was particularly evident in controversial topics, from alternative medicine to events like Gamergate.

Among these users was Larry Sanger, who noted that while Grokipedia still has a lot of areas of improvement, it is already very promising. “My initial impression, looking at my own article and poking around here and there, is that Grokipedia is very OK. The jury’s still out as to whether it’s actually better than Wikipedia. But at this point I would have to say “maybe!” He wrote in a post on X. 

Musk responded to Sanger’s comments, stating that the Wikipedia co-founder’s observations are “accurate.” The xAI founder also noted in a separate X post that even in its V0.1 form, Grokipedia is already better than Wikipedia. 

Why Grokipedia exists 

During an interview on the Tucker Carlson Show, Sanger point out that Wikipedia has become a far cry from his initial vision for the online encyclopedia, and a lot of this was because of the its “Reliable sources/Perennial sources” page, which categories publications and sources into tiers of credibility. Sanger noted that the list leaned heavily left, with conservative publications getting effectively blacklisted in favor of their more liberal.

Advertisement

Musk responded to Sanger’s comments by stating that Grokipedia will be created as a step towards xAI’s broader goal of “understanding the Universe.” He added that Grokipedia, which will use xAI’s Grok, would provide broader sourcing and a freer exchange of information compared to Wikipedia’s current system. 

One month after Elon Musk’s comments, Grokipedia has gone live in its V0.1 form.

Continue Reading

Trending