News
SpaceX still an option for future Amazon internet satellite launches, says Senior VP
An Amazon executive says that the company could still call on SpaceX to launch some of its Project Kuiper internet satellites after two of the three unproven rockets it purchased announced launch delays days apart.
Amazon began work on Project Kuiper in 2018. When SpaceX CEO Elon Musk fired several senior employees overseeing the company’s Starlink satellite internet program for being overly cautious, at least two of those employees immediately landed in senior positions at Project Kuiper. Four years later and more than two years after Amazon received an FCC license to deploy its 3,236-satellite Project Kuiper constellation, which aims to compete directly with SpaceX’s Starlink, the company’s first prototype satellite launch has changed rockets and slipped from late 2022 to early 2023.
Of the 77 firm launch contracts Amazon has signed since April 2021, only nine are for a rocket – United Launch Alliance’s (ULA) Atlas V – that has already successfully flown. The remaining 68 (and another 15 exercisable options) are spread among ULA’s Vulcan Centaur, Arianespace’s Ariane 6, and Blue Origin’s New Glenn, all of which are months away from their first launch attempts.
On October 10th, ULA CEO Tory Bruno told reporters that Vulcan Centaur’s launch debut had slipped from its latest late-2022 target to no earlier than (NET) “early 2023.” Garnering 38 of 77 firm contracts, Vulcan is the single most important rocket for Amazon’s Project Kuiper plans and is likely expected to launch close to half of all Kuiper satellites.
Nine days later, Ariane Group and the European Space Agency (ESA) announced that Ariane 6’s launch debut had also slipped from a late-2022 target. Unlike Vulcan’s gentle early-2023 slip, Ariane 6’s debut was pushed to late 2023 at the earliest, and ESA and Ariane officials frankly admitted that that could easily become 2024. Excluding options, Ariane 6 won 18 Project Kuiper launch contracts and is the constellation’s second most important rocket.
Because Amazon applied for its Project Kuiper license so early, a six-year countdown started when the FCC approved its license in July 2020. If Amazon fails to launch half of its 3,236 satellites within six years of that receipt, the FCC could revoke Kuiper’s constellation license. While it’s unlikely that the FCC would actually revoke the license of a constellation that’s close to achieving its deployment milestones, the deadline still emphasizes just how far Amazon and its suppliers are falling behind.
Vulcan, Ariane 6, and Project Kuiper prototype launch delays have only worsened an already challenging situation. In addition to the rocket’s long-awaited debut, ULA has major obligations to NASA and the US military, who expect Vulcan to complete up to four more launches in 2023. Unless ULA pulls off a minor miracle, it’s unlikely that Vulcan will be able to launch five times in its first year of service. Respectively, ULA’s Atlas V and Delta IV rockets took 2.5 and 3.5 years to reach that milestone. If ULA’s past record serves as a reasonable guide for its future, it’s possible that Vulcan Centaur won’t have the spare capacity to begin Project Kuiper launches until 2025.
The same is arguably true for Ariane 6, which has an even busier manifest – all of which may be delayed to 2024. Of Arianespace’s two most recent rockets, Ariane 4 took 14 months and Ariane 5 took 53 months to complete their first five fully successful launches. Ariane 6 borrows heavily from Ariane 5’s design. Unless Arianespace gets off to a record-breaking start or prioritizes Amazon over ESA and other European operators, an almost unthinkable scenario, it’s difficult to imagine that Ariane 6 will have the spare capacity to begin Project Kuiper launches before 2025 or 2026.
Blue Origin’s New Glenn rocket, which is years behind schedule and unlikely to debut before late 2023 or 2024, might ironically be Amazon’s best bet for the first dedicated Project Kuiper launch, but only if its debut is near-flawless and doesn’t slip any further. Given that New Glenn will be Blue Origin’s first orbital rocket of any kind, more delays and issues (if not an outright failure) on the first launch are likely. New Glenn is thus also unlikely to be ready to launch large batches of Project Kuiper satellites until 2024 or 2025. Given the record of its suborbital New Shepard rocket, the odds are also against Blue Origin quickly ramping up the cadence of a far more complex orbital launch vehicle.
Only Atlas V appears to have any significant chance of beginning large-scale Project Kuiper launches before 2025. But ULA is shutting down Atlas V production to transition to Vulcan, so it’s impossible for Amazon to order more than nine of the rockets, as ULA.
Unfortunately for Amazon, in addition to the many rocket-side issues facing Project Kuiper, its satellite prototype delays will make it even harder for the company to begin large-scale launches sooner than later. SpaceX, now the proud owner of a majority of all working satellites in orbit, took around 21 months to go from launching its first two prototypes to its first batch of 60 operational Starlink satellites. The satellite design it settled on was almost nothing like the first two prototypes.

If Amazon’s first prototypes launch on Vulcan’s early-2023 debut, perform excellently, meet or exceed expectations after just a few months of testing, and are close to the final satellite design, Project Kuiper may still have a shot at manufacturing enough satellites to fill one or more launches in 2024. But if its first satellites run into major issues, Amazon’s decision to “[bring] up manufacturing of…production satellites [in parallel with prototype development]” could set it back months if it’s forced to redesign its satellites, find new suppliers, or significantly change the factory it’s already building.
Combined, Project Kuiper finds itself in an unenviable position. It’s thus unsurprising that as of October 2022, an Amazon executive appears to have changed their tune about using SpaceX rockets. Over the last ~13 months, SpaceX has become the single most productive launch provider in the world, besting the entire nation of China. On a quarterly basis, SpaceX now launches more useful mass to orbit than the rest of the world combined. It’s also the only launch provider on Earth that can create spare capacity for last-minute customers by shuffling its own internal launch demands.
According to Dave Limp, senior vice president of devices and services at Amazon, Project Kuiper is willing to consider taking advantage of some of SpaceX’s unprecedented capabilities after it shunned the company entirely in earlier contracts and statements. Speaking in a Washington Post Live interview, Limp says that Amazon is “open to contracting with anyone” and understands “that heavy launch capacity is [and will likely remain] pretty constrained” for years to come.
Unfortunately, Limp began by falsely asserting that Falcon 9 was too small to have warranted earlier launch contracts, stating that it’s “probably at the low end of…the capacity that we need.” In an expendable configuration, Falcon 9 can launch more than 22 tons (~48,500 lb) to low Earth orbit (LEO), while Ariane 6 is quoted at [PDF] 21.7 tons (~47,800 lb). While it hasn’t flown, SpaceX also offers an extended payload fairing that should more or less match Vulcan and Ariane 6’s largest fairings.
But Limp expressed interest in SpaceX’s Falcon Heavy rocket, which could likely match or come close to the payload volume of Ariane 6 and Vulcan and far exceed either rocket’s performance to LEO. In a configuration that would allow SpaceX to recover all three of Falcon Heavy’s boosters, almost guaranteeing that it would cost less than Vulcan or Ariane 6, the rocket would likely be able to launch around 40-50 tons (90,000-110,000 lb) to LEO. The Amazon executive even brought up SpaceX’s next-generation Starship rocket as a more desirable option for future Project Kuiper launches. Starship is designed to launch anywhere from 100 to 150 tons to LEO, should cost even less than Falcon 9 or Falcon Heavy, and will eventually feature a payload bay that dwarfs even New Glenn’s massive fairing.
Nonetheless, despite the promise of SpaceX, Amazon appears to be in no rush to hedge its bets on Vulcan, Ariane 6, and New Glenn. Only time will tell if its multi-billion-dollar gamble pays off.
News
BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor
Tesla has officially launched public Robotaxi rides in Austin, Texas, without a Safety Monitor in the vehicle, marking the first time the company has removed anyone from the vehicle other than the rider.
The Safety Monitor has been present in Tesla Robotaxis in Austin since its launch last June, maintaining safety for passengers and other vehicles, and was placed in the passenger’s seat.
Tesla planned to remove the Safety Monitor at the end of 2025, but it was not quite ready to do so. Now, in January, riders are officially reporting that they are able to hail a ride from a Model Y Robotaxi without anyone in the vehicle:
I am in a robotaxi without safety monitor pic.twitter.com/fzHu385oIb
— TSLA99T (@Tsla99T) January 22, 2026
Tesla started testing this internally late last year and had several employees show that they were riding in the vehicle without anyone else there to intervene in case of an emergency.
Tesla has now expanded that program to the public, but it is currently unclear if that is the case across its entire fleet of vehicles in Austin at this point.
Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing
The Robotaxi program also operates in the California Bay Area, where the fleet is much larger, but Safety Monitors are placed in the driver’s seat and utilize Full Self-Driving, so it is essentially the same as an Uber driver using a Tesla with FSD.
In Austin, the removal of Safety Monitors marks a substantial achievement for Tesla moving forward. Now that it has enough confidence to remove Safety Monitors from Robotaxis altogether, there are nearly unlimited options for the company in terms of expansion.
While it is hoping to launch the ride-hailing service in more cities across the U.S. this year, this is a much larger development than expansion, at least for now, as it is the first time it is performing driverless rides in Robotaxi anywhere in the world for the public to enjoy.
Investor's Corner
Tesla Earnings Call: Top 5 questions investors are asking
Tesla has scheduled its Earnings Call for Q4 and Full Year 2025 for next Wednesday, January 28, at 5:30 p.m. EST, and investors are already preparing to get some answers from executives regarding a wide variety of topics.
The company accepts several questions from retail investors through the platform Say, which then allows shareholders to vote on the best questions.
Tesla does not answer anything regarding future product releases, but they are willing to shed light on current timelines, progress of certain projects, and other plans.
There are five questions that range over a variety of topics, including SpaceX, Full Self-Driving, Robotaxi, and Optimus, which are currently in the lead to be asked and potentially answered by Elon Musk and other Tesla executives:
- You once said: Loyalty deserves loyalty. Will long-term Tesla shareholders still be prioritized if SpaceX does an IPO?
- Our Take – With a lot of speculation regarding an incoming SpaceX IPO, Tesla investors, especially long-term ones, should be able to benefit from an early opportunity to purchase shares. This has been discussed endlessly over the past year, and we must be getting close to it.
- When is FSD going to be 100% unsupervised?
- Our Take – Musk said today that this is essentially a solved problem, and it could be available in the U.S. by the end of this year.
- What is the current bottleneck to increase Robotaxi deployment & personal use unsupervised FSD? The safety/performance of the most recent models or people to monitor robots, robotaxis, in-car, or remotely? Or something else?
- Our Take – The bottleneck seems to be based on data, which Musk said Tesla needs 10 billion miles of data to achieve unsupervised FSD. Once that happens, regulatory issues will be what hold things up from moving forward.
- Regarding Optimus, could you share the current number of units deployed in Tesla factories and actively performing production tasks? What specific roles or operations are they handling, and how has their integration impacted factory efficiency or output?
- Our Take – Optimus is going to have a larger role in factories moving forward, and later this year, they will have larger responsibilities.
- Can you please tie purchased FSD to our owner accounts vs. locked to the car? This will help us enjoy it in any Tesla we drive/buy and reward us for hanging in so long, some of us since 2017.
- Our Take – This is a good one and should get us some additional information on the FSD transfer plans and Subscription-only model that Tesla will adopt soon.
Tesla will have its Earnings Call on Wednesday, January 28.
Elon Musk
Elon Musk shares incredible detail about Tesla Cybercab efficiency
Elon Musk shared an incredible detail about Tesla Cybercab’s potential efficiency, as the company has hinted in the past that it could be one of the most affordable vehicles to operate from a per-mile basis.
ARK Invest released a report recently that shed some light on the potential incremental cost per mile of various Robotaxis that will be available on the market in the coming years.
The Cybercab, which is detailed for the year 2030, has an exceptionally low cost of operation, which is something Tesla revealed when it unveiled the vehicle a year and a half ago at the “We, Robot” event in Los Angeles.
Musk said on numerous occasions that Tesla plans to hit the $0.20 cents per mile mark with the Cybercab, describing a “clear path” to achieving that figure and emphasizing it is the “full considered” cost, which would include energy, maintenance, cleaning, depreciation, and insurance.
Probably true
— Elon Musk (@elonmusk) January 22, 2026
ARK’s report showed that the Cybercab would be roughly half the cost of the Waymo 6th Gen Robotaxi in 2030, as that would come in at around $0.40 per mile all in. Cybercab, at scale, would be at $0.20.

Credit: ARK Invest
This would be a dramatic decrease in the cost of operation for Tesla, and the savings would then be passed on to customers who choose to utilize the ride-sharing service for their own transportation needs.
The U.S. average cost of new vehicle ownership is about $0.77 per mile, according to AAA. Meanwhile, Uber and Lyft rideshares often cost between $1 and $4 per mile, while Waymo can cost between $0.60 and $1 or more per mile, according to some estimates.
Tesla’s engineering has been the true driver of these cost efficiencies, and its focus on creating a vehicle that is as cost-effective to operate as possible is truly going to pay off as the vehicle begins to scale. Tesla wants to get the Cybercab to about 5.5-6 miles per kWh, which has been discussed with prototypes.
Additionally, fewer parts due to the umboxed manufacturing process, a lower initial cost, and eliminating the need to pay humans for their labor would also contribute to a cheaper operational cost overall. While aspirational, all of the ingredients for this to be a real goal are there.
It may take some time as Tesla needs to hammer the manufacturing processes, and Musk has said there will be growing pains early. This week, he said regarding the early production efforts:
“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”