News
SpaceX still an option for future Amazon internet satellite launches, says Senior VP
An Amazon executive says that the company could still call on SpaceX to launch some of its Project Kuiper internet satellites after two of the three unproven rockets it purchased announced launch delays days apart.
Amazon began work on Project Kuiper in 2018. When SpaceX CEO Elon Musk fired several senior employees overseeing the company’s Starlink satellite internet program for being overly cautious, at least two of those employees immediately landed in senior positions at Project Kuiper. Four years later and more than two years after Amazon received an FCC license to deploy its 3,236-satellite Project Kuiper constellation, which aims to compete directly with SpaceX’s Starlink, the company’s first prototype satellite launch has changed rockets and slipped from late 2022 to early 2023.
Of the 77 firm launch contracts Amazon has signed since April 2021, only nine are for a rocket – United Launch Alliance’s (ULA) Atlas V – that has already successfully flown. The remaining 68 (and another 15 exercisable options) are spread among ULA’s Vulcan Centaur, Arianespace’s Ariane 6, and Blue Origin’s New Glenn, all of which are months away from their first launch attempts.
On October 10th, ULA CEO Tory Bruno told reporters that Vulcan Centaur’s launch debut had slipped from its latest late-2022 target to no earlier than (NET) “early 2023.” Garnering 38 of 77 firm contracts, Vulcan is the single most important rocket for Amazon’s Project Kuiper plans and is likely expected to launch close to half of all Kuiper satellites.
Nine days later, Ariane Group and the European Space Agency (ESA) announced that Ariane 6’s launch debut had also slipped from a late-2022 target. Unlike Vulcan’s gentle early-2023 slip, Ariane 6’s debut was pushed to late 2023 at the earliest, and ESA and Ariane officials frankly admitted that that could easily become 2024. Excluding options, Ariane 6 won 18 Project Kuiper launch contracts and is the constellation’s second most important rocket.
Because Amazon applied for its Project Kuiper license so early, a six-year countdown started when the FCC approved its license in July 2020. If Amazon fails to launch half of its 3,236 satellites within six years of that receipt, the FCC could revoke Kuiper’s constellation license. While it’s unlikely that the FCC would actually revoke the license of a constellation that’s close to achieving its deployment milestones, the deadline still emphasizes just how far Amazon and its suppliers are falling behind.
Vulcan, Ariane 6, and Project Kuiper prototype launch delays have only worsened an already challenging situation. In addition to the rocket’s long-awaited debut, ULA has major obligations to NASA and the US military, who expect Vulcan to complete up to four more launches in 2023. Unless ULA pulls off a minor miracle, it’s unlikely that Vulcan will be able to launch five times in its first year of service. Respectively, ULA’s Atlas V and Delta IV rockets took 2.5 and 3.5 years to reach that milestone. If ULA’s past record serves as a reasonable guide for its future, it’s possible that Vulcan Centaur won’t have the spare capacity to begin Project Kuiper launches until 2025.
The same is arguably true for Ariane 6, which has an even busier manifest – all of which may be delayed to 2024. Of Arianespace’s two most recent rockets, Ariane 4 took 14 months and Ariane 5 took 53 months to complete their first five fully successful launches. Ariane 6 borrows heavily from Ariane 5’s design. Unless Arianespace gets off to a record-breaking start or prioritizes Amazon over ESA and other European operators, an almost unthinkable scenario, it’s difficult to imagine that Ariane 6 will have the spare capacity to begin Project Kuiper launches before 2025 or 2026.
Blue Origin’s New Glenn rocket, which is years behind schedule and unlikely to debut before late 2023 or 2024, might ironically be Amazon’s best bet for the first dedicated Project Kuiper launch, but only if its debut is near-flawless and doesn’t slip any further. Given that New Glenn will be Blue Origin’s first orbital rocket of any kind, more delays and issues (if not an outright failure) on the first launch are likely. New Glenn is thus also unlikely to be ready to launch large batches of Project Kuiper satellites until 2024 or 2025. Given the record of its suborbital New Shepard rocket, the odds are also against Blue Origin quickly ramping up the cadence of a far more complex orbital launch vehicle.
Only Atlas V appears to have any significant chance of beginning large-scale Project Kuiper launches before 2025. But ULA is shutting down Atlas V production to transition to Vulcan, so it’s impossible for Amazon to order more than nine of the rockets, as ULA.
Unfortunately for Amazon, in addition to the many rocket-side issues facing Project Kuiper, its satellite prototype delays will make it even harder for the company to begin large-scale launches sooner than later. SpaceX, now the proud owner of a majority of all working satellites in orbit, took around 21 months to go from launching its first two prototypes to its first batch of 60 operational Starlink satellites. The satellite design it settled on was almost nothing like the first two prototypes.

If Amazon’s first prototypes launch on Vulcan’s early-2023 debut, perform excellently, meet or exceed expectations after just a few months of testing, and are close to the final satellite design, Project Kuiper may still have a shot at manufacturing enough satellites to fill one or more launches in 2024. But if its first satellites run into major issues, Amazon’s decision to “[bring] up manufacturing of…production satellites [in parallel with prototype development]” could set it back months if it’s forced to redesign its satellites, find new suppliers, or significantly change the factory it’s already building.
Combined, Project Kuiper finds itself in an unenviable position. It’s thus unsurprising that as of October 2022, an Amazon executive appears to have changed their tune about using SpaceX rockets. Over the last ~13 months, SpaceX has become the single most productive launch provider in the world, besting the entire nation of China. On a quarterly basis, SpaceX now launches more useful mass to orbit than the rest of the world combined. It’s also the only launch provider on Earth that can create spare capacity for last-minute customers by shuffling its own internal launch demands.
According to Dave Limp, senior vice president of devices and services at Amazon, Project Kuiper is willing to consider taking advantage of some of SpaceX’s unprecedented capabilities after it shunned the company entirely in earlier contracts and statements. Speaking in a Washington Post Live interview, Limp says that Amazon is “open to contracting with anyone” and understands “that heavy launch capacity is [and will likely remain] pretty constrained” for years to come.
Unfortunately, Limp began by falsely asserting that Falcon 9 was too small to have warranted earlier launch contracts, stating that it’s “probably at the low end of…the capacity that we need.” In an expendable configuration, Falcon 9 can launch more than 22 tons (~48,500 lb) to low Earth orbit (LEO), while Ariane 6 is quoted at [PDF] 21.7 tons (~47,800 lb). While it hasn’t flown, SpaceX also offers an extended payload fairing that should more or less match Vulcan and Ariane 6’s largest fairings.
But Limp expressed interest in SpaceX’s Falcon Heavy rocket, which could likely match or come close to the payload volume of Ariane 6 and Vulcan and far exceed either rocket’s performance to LEO. In a configuration that would allow SpaceX to recover all three of Falcon Heavy’s boosters, almost guaranteeing that it would cost less than Vulcan or Ariane 6, the rocket would likely be able to launch around 40-50 tons (90,000-110,000 lb) to LEO. The Amazon executive even brought up SpaceX’s next-generation Starship rocket as a more desirable option for future Project Kuiper launches. Starship is designed to launch anywhere from 100 to 150 tons to LEO, should cost even less than Falcon 9 or Falcon Heavy, and will eventually feature a payload bay that dwarfs even New Glenn’s massive fairing.
Nonetheless, despite the promise of SpaceX, Amazon appears to be in no rush to hedge its bets on Vulcan, Ariane 6, and New Glenn. Only time will tell if its multi-billion-dollar gamble pays off.
News
Tesla says its Texas lithium refinery is now operational and unlike anything in North America
Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.
Tesla has confirmed that its Texas lithium refinery is now operational, marking a major milestone for the company’s U.S. battery supply chain. In a newly released video, Tesla staff detailed how the facility converts raw spodumene ore directly into battery-grade lithium hydroxide, making it the first refinery of its kind in North America.
Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.
A first-of-its-kind lithium refining process
In the video, Tesla staff at the Texas lithium refinery near Corpus Christi explained that the facility processes spodumene, a lithium-rich hard-rock ore, directly into battery-grade lithium hydroxide on site. The approach bypasses intermediate refining steps commonly used elsewhere in the industry.
According to the staff, spodumene is processed through kilns and cooling systems before undergoing alkaline leaching, purification, and crystallization. The resulting lithium hydroxide is suitable for use in batteries for energy storage and electric vehicles. Tesla employees noted that the process is simpler and less expensive than traditional refining methods.
Staff at the facility added that the process eliminates hazardous byproducts typically associated with lithium refining. “Our process is more sustainable than traditional methods and eliminates hazardous byproducts, and instead produces a co-product named anhydrite, used in concrete mixes,” an employee noted.
Musk calls the facility the largest lithium refinery in America
The refinery’s development timeline has been very impressive. The project moved from breaking ground in 2023 to integrated plant startup in 2025 by running feasibility studies, design, and construction in parallel. This compressed schedule enabled the fastest time-to-market for a refinery using this type of technology. This 2026, the facility has become operational.
Elon Musk echoed the significance of the project in posts on X, stating that “the largest Lithium refinery in America is now operational.” In a separate comment, Musk described the site as “the most advanced lithium refinery in the world” and emphasized that the facility is “very clean.”
By bringing large-scale lithium hydroxide production online in Texas, Tesla is positioning itself to reduce reliance on foreign refining capacity while supporting its growth in battery and vehicle production. The refinery also complements Tesla’s nascent domestic battery manufacturing efforts, which could very well be a difference maker in the market.
News
Tesla Optimus V3 gets early third-party feedback, and it’s eye-opening
Jason Calacanis’ remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot
Angel investor and entrepreneur Jason Calacanis shared some insights after he got an early look at Tesla’s upcoming Optimus V3. His remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot.
Calacanis’ comments were shared publicly on X, and they were quite noteworthy.
The angel investor stated that he visited Tesla’s Optimus lab on a Sunday morning and observed that the place was buzzing with energy. The investor then shared a rare, shocking insight. As per Calacanis, Optimus V3 will be so revolutionary that people will probably not even remember that Tesla used to make cars in the future.
“I don’t want to name drop, but two Sundays ago, I went to Tesla with Elon and I went and visited the Optimus lab. There were a large number of people working on a Sunday at 10 a.m. and I saw Optimus 3. I can tell you now, nobody will remember that Tesla ever made a car,” he noted.
The angel investor also reiterated the primary advantage of Optimus, and how it could effectively change the world.
“They will only remember the Optimus and that he is going to make a billion of those, and it is going to be the most transformative technology product ever made in the history of humanity, because what LLMs are gonna enable those products to do is understand the world and then do things in the world that we don’t want to do. I believe there will be a 1:1 ratio of humans to Optimus, and I think he’s already won,” he said.
While Calacanis’ comments were clearly opinion-driven, they stood out as among the first from a non-Tesla employee about Optimus V3. Considering his reaction to the humanoid robot, perhaps Elon Musk’s predictions for Optimus V3 might not be too far-fetched at all.
Tesla has been careful with its public messaging around Optimus V3’s development stage. Musk has previously stated on X that Optimus V3 has not yet been revealed publicly, clarifying that images and videos of the robot online still show Optimus V2 and V2.5, not the next-generation unit. As for Calacanis’ recent comments, however, Musk responded with a simple “Probably true” in a post on X.
News
Tesla taps Samsung for 5G modems amid plans of Robotaxi ramp: report
The move signals Tesla’s growing focus on supply-chain diversification and next-generation communications as it prepares to scale its autonomous driving and robotaxi operations.
A report from South Korea has suggested that Samsung Electronics is set to begin supplying 5G automotive modems to Tesla. If accurate, this would mark a major expansion of the two companies’ partnership beyond AI chips and into vehicle connectivity.
The move signals Tesla’s growing focus on supply-chain diversification and next-generation communications as it prepares to scale its autonomous driving and Robotaxi operations.
Samsung’s 5G modem
As per industry sources cited by TheElec, Samsung’s System LSI division has completed development of a dedicated automotive-grade 5G modem for Tesla. The 5G modem is reportedly in its testing phase. Initial supply is expected to begin in the first half of this year, with the first deployments planned for Tesla’s Robotaxi fleet in Texas. A wider rollout to consumer vehicles is expected to follow.
Development of the modem began in early 2024 and it required a separate engineering process from Samsung’s smartphone modems. Automotive modems must meet stricter durability standards, including resistance to extreme temperatures and vibration, along with reliability over a service life exceeding 10 years. Samsung will handle chip design internally, while a partner company would reportedly manage module integration.
The deal represents the first time Samsung has supplied Tesla with a 5G vehicle modem. Tesla has historically relied on Qualcomm for automotive connectivity, but the new agreement suggests that the electric vehicle maker may be putting in some serious effort into diversifying its suppliers as connectivity becomes more critical to autonomous driving.
Deepening Tesla–Samsung ties
The modem supply builds on a rapidly expanding relationship between the two companies. Tesla previously selected Samsung’s foundry business to manufacture its next-generation AI6 chips, a deal valued at more than 22.7 trillion won and announced in mid-2025. Together, the AI chip and 5G modem agreements position Samsung as a key semiconductor partner for Tesla’s future vehicle platforms.
Industry observers have stated that the collaboration aligns with Tesla’s broader effort to reduce reliance on Chinese and Taiwanese suppliers. Geopolitical risk and long-term supply stability are believed to be driving the shift in no small part, particularly as Tesla prepares for large-scale Robotaxi deployment.
Stable, high-speed connectivity is essential for Tesla’s Full Self-Driving system, supporting real-time mapping, fleet management, and continuous software updates. By pairing in-vehicle AI computing with a new 5G modem supplier, Tesla appears to be tightening control over both its hardware stack and its global supply chain.