Connect with us

News

SpaceX’s fifth Falcon Heavy launch on track for Sunday liftoff

Published

on

Update: SpaceX’s fifth Falcon Heavy launch is on track to launch as early as 5:56 pm EST (22:56 UTC), Sunday, January 15th. Tune in below around 5:40 pm EST (22:40 UTC) to watch the potentially spectacular launch live.

If Falcon Heavy does launch shortly after sunset, it could put on a spectacular show, lighting up the twilight skies for hundreds of miles up and down the East Coast.

The fifth Falcon Heavy rolled out of SpaceX’s Kennedy Space Center Pad 39A integration hangar on January 9th and went vertical early on January 10th. 12 hours later, it was loaded with ~1500 tons (~3.3 million lbs) of liquid oxygen and kerosene propellant and ignited for about eight seconds. SpaceX uses static fire tests more liberally than most other launch providers to try to ensure that all systems – propulsion included – are cooperating before liftoff.

At full throttle, Falcon Heavy Block 5’s 27 Merlin 1D engines – nine per Falcon 9-derived booster – can produce 2326 tons (5.13 million lbf) of thrust at sea level, making it the most powerful privately-developed rocket in history. In terms of performance, Falcon Heavy is the fifth most capable rocket ever built and is second only to NASA’s Space Launch System (SLS) today. While the records of N1, Saturn V, and Energia still stand, all three were retired decades ago.

As is the norm for a rocket with as little experience as Falcon Heavy, SpaceX conducted the static fire test without the USSF-67 payload installed. Like USSF-44, a virtually identical Falcon Heavy launch with similar payloads that launched on November 1st, 2022, SpaceX needs to roll the USSF-67 rocket back to the hangar for fairing installation. During USSF-44, SpaceX took approximately 110 hours to go from static fire to liftoff.

Advertisement
-->

USSF-67’s static fire occurred about 100-104 hours before its scheduled liftoff, meaning that SpaceX only needs to be about 5% more efficient to be ready to launch on Saturday, January 14th. Assuming Falcon Heavy returns to the hangar and rolls back to the pad about as quickly as USSF-44, the odds of a Saturday launch are decent.

USSF-44’s static fire. (SpaceX)
USSF-44 rolls out a second time after payload fairing installation. (Richard Angle)
USSF-44 took about four and a half days to go from static fire to liftoff. (SpaceX)

SpaceX’s second direct GEO launch

Like USSF-44, Falcon Heavy will sacrifice one of its three boosters (the center core) to launch USSF-67 directly to a circular geosynchronous orbit ~35,800 kilometers (~22,250 mi) above Earth’s surface. A satellite operating at GSO will never stray from the same region of Earth, making it useful for communications and surveillance. Getting there, however, can be exceptionally difficult.

“To simplify the rocket’s job, most GEO-bound satellites are launched into an elliptical geosynchronous or geostationary transfer orbit (GTO) and use their own propulsion to circularize that ellipse.

On a direct-to-GEO launch, the rocket does almost all of the work. After reaching a parking orbit in Low Earth Orbit (LEO), Falcon Heavy’s upper stage will complete a second burn to reach GTO. Then, while conducting a complex ballet of thermal management and tank pressure maintenance to prevent all of its cryogenic liquid oxygen (LOx) from boiling into gas and its refined kerosene (RP-1) from freezing into an unusable slush, the upper stage must coast ‘uphill’ for around five or six hours.

During that journey from 300 kilometers to 35,800 kilometers, the upper stage must also survive passes through both of Earth’s Van Allen radiation belts. At apogee, Falcon S2 must reignite its Merlin Vacuum engine for a minute or two to reach a circular GSO. Payload deployment follows soon after and could last anywhere from a few minutes to hours. Finally, to be a dutiful space tenant, Falcon’s upper stage must complete at least one more burn to reach a graveyard orbit a few hundred kilometers above GEO.”

Teslarati.com – November 1st, 2023

The USSF-67 payload is mostly a mystery. Like USSF-44, it will carry a Northrop Grumman LDPE (Long Duration Propulsive EELV) with several unspecified rideshare payloads. LPDE is a transfer vehicle capable of deploying small satellites into customized orbits and hosting payloads for months in space.

The US Space Systems Command says [PDF] that “LDPE provides critical data to inform future Space Force programs” and that “the unique experiments and prototype payloads hosted on LDPE-3A [will] advance warfighting capabilities in the areas of on-orbit threat assessment, space hazard detection, and space domain awareness.”

Stay tuned for updates on USSF-67’s launch schedule and SpaceX’s official webcast.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Starlink passes 9 million active customers just weeks after hitting 8 million

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

Published

on

Credit: Starlink/X

SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark. 

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

9 million customers

In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day. 

“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote. 

That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.

Advertisement
-->

Starlink’s momentum

Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.

Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future. 

Continue Reading

News

NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.

Published

on

Credit: Grok Imagine

NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”

Jim Fan’s hands-on FSD v14 impressions

Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14

“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X. 

Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”

Advertisement
-->

The Physical Turing Test

The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning. 

This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.

Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.

Continue Reading

News

Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1

The update was released just a day after FSD v14.2.2 started rolling out to customers. 

Published

on

Credit: Grok

Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers. 

Tesla owner shares insights on FSD v14.2.2.1

Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.

Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.

“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.

Tesla’s FSD v14.2.2 update

Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.

Advertisement
-->

New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.

Continue Reading