News
SpaceX’s fifth Falcon Heavy launch on track for Sunday liftoff
Update: SpaceX’s fifth Falcon Heavy launch is on track to launch as early as 5:56 pm EST (22:56 UTC), Sunday, January 15th. Tune in below around 5:40 pm EST (22:40 UTC) to watch the potentially spectacular launch live.
If Falcon Heavy does launch shortly after sunset, it could put on a spectacular show, lighting up the twilight skies for hundreds of miles up and down the East Coast.
The fifth Falcon Heavy rolled out of SpaceX’s Kennedy Space Center Pad 39A integration hangar on January 9th and went vertical early on January 10th. 12 hours later, it was loaded with ~1500 tons (~3.3 million lbs) of liquid oxygen and kerosene propellant and ignited for about eight seconds. SpaceX uses static fire tests more liberally than most other launch providers to try to ensure that all systems – propulsion included – are cooperating before liftoff.
The update that's rolling out to the fleet makes full use of the front and rear steering travel to minimize turning circle. In this case a reduction of 1.6 feet just over the air— Wes (@wmorrill3) April 16, 2024
At full throttle, Falcon Heavy Block 5’s 27 Merlin 1D engines – nine per Falcon 9-derived booster – can produce 2326 tons (5.13 million lbf) of thrust at sea level, making it the most powerful privately-developed rocket in history. In terms of performance, Falcon Heavy is the fifth most capable rocket ever built and is second only to NASA’s Space Launch System (SLS) today. While the records of N1, Saturn V, and Energia still stand, all three were retired decades ago.
As is the norm for a rocket with as little experience as Falcon Heavy, SpaceX conducted the static fire test without the USSF-67 payload installed. Like USSF-44, a virtually identical Falcon Heavy launch with similar payloads that launched on November 1st, 2022, SpaceX needs to roll the USSF-67 rocket back to the hangar for fairing installation. During USSF-44, SpaceX took approximately 110 hours to go from static fire to liftoff.
USSF-67’s static fire occurred about 100-104 hours before its scheduled liftoff, meaning that SpaceX only needs to be about 5% more efficient to be ready to launch on Saturday, January 14th. Assuming Falcon Heavy returns to the hangar and rolls back to the pad about as quickly as USSF-44, the odds of a Saturday launch are decent.



SpaceX’s second direct GEO launch
Like USSF-44, Falcon Heavy will sacrifice one of its three boosters (the center core) to launch USSF-67 directly to a circular geosynchronous orbit ~35,800 kilometers (~22,250 mi) above Earth’s surface. A satellite operating at GSO will never stray from the same region of Earth, making it useful for communications and surveillance. Getting there, however, can be exceptionally difficult.
“To simplify the rocket’s job, most GEO-bound satellites are launched into an elliptical geosynchronous or geostationary transfer orbit (GTO) and use their own propulsion to circularize that ellipse.
On a direct-to-GEO launch, the rocket does almost all of the work. After reaching a parking orbit in Low Earth Orbit (LEO), Falcon Heavy’s upper stage will complete a second burn to reach GTO. Then, while conducting a complex ballet of thermal management and tank pressure maintenance to prevent all of its cryogenic liquid oxygen (LOx) from boiling into gas and its refined kerosene (RP-1) from freezing into an unusable slush, the upper stage must coast ‘uphill’ for around five or six hours.
During that journey from 300 kilometers to 35,800 kilometers, the upper stage must also survive passes through both of Earth’s Van Allen radiation belts. At apogee, Falcon S2 must reignite its Merlin Vacuum engine for a minute or two to reach a circular GSO. Payload deployment follows soon after and could last anywhere from a few minutes to hours. Finally, to be a dutiful space tenant, Falcon’s upper stage must complete at least one more burn to reach a graveyard orbit a few hundred kilometers above GEO.”
Teslarati.com – November 1st, 2023
The USSF-67 payload is mostly a mystery. Like USSF-44, it will carry a Northrop Grumman LDPE (Long Duration Propulsive EELV) with several unspecified rideshare payloads. LPDE is a transfer vehicle capable of deploying small satellites into customized orbits and hosting payloads for months in space.
The US Space Systems Command says [PDF] that “LDPE provides critical data to inform future Space Force programs” and that “the unique experiments and prototype payloads hosted on LDPE-3A [will] advance warfighting capabilities in the areas of on-orbit threat assessment, space hazard detection, and space domain awareness.”
Stay tuned for updates on USSF-67’s launch schedule and SpaceX’s official webcast.
News
Tesla exec: Preparations underway but no firm timeline yet for FSD rollout in China
The information was related by Tesla China Vice President Grace Tao in a comment to local media.
Tesla has not set a specific launch date for Full Self-Driving in China, despite the company’s ongoing preparations for a local FSD rollout.
The information was related by Tesla China Vice President Grace Tao in a comment to local media.
Tesla China prepares FSD infrastructure
Speaking in a recent media interview, the executive confirmed that Tesla has established a local training center in China to support the full adaptation of FSD to domestic driving conditions, as noted in a report from Sina News. However, she also noted that the company does not have a specific date when FSD will officially roll out in China.
“We have set up a local training center in China specifically to handle this adaptation,” Tao said. “Once officially released, it will demonstrate a level of performance that is no less than, and may even surpass, that of local drivers.”
Tao also emphasized the rapid accumulation of data by Tesla’s FSD system, with the executive highlighting that Full Self-Driving has now accumulated more than 7.5 billion miles of real-world driving data worldwide.
Possible 2026 rollout
The Tesla executive’s comments come amidst Elon Musk’s previous comments suggesting that regulatory approval in China could arrive sometime this 2026. During Tesla’s annual shareholder meeting in November 2025, Musk clarified that FSD had only received “partial approval” in China, though full authorization could potentially arrive around February or March 2026.
Musk reiterated that timeline at the World Economic Forum in Davos, when he stated that FSD approval in China could come as early as February.
Tesla’s latest FSD software, version 14, is already being tested in more advanced deployments in the United States. The company has also started the rollout of its fully unsupervised Robotaxis in Austin, Texas, which no longer feature safety monitors.
News
Tesla Semi lines up for $165M in California incentives ahead of mass production
The update was initially reported by The Los Angeles Times.
Tesla is reportedly positioned to receive roughly $165 million in California clean-truck incentives for its Semi.
The update was initially reported by The Los Angeles Times.
As per the Times, the Tesla Semi’s funding will come from California’s Hybrid and Zero-Emission Truck and Bus Incentive Project (HVIP), which was designed to accelerate the adoption of cleaner medium- and heavy-duty vehicles. Since its launch in 2009, the HVIP has distributed more than $1.6 billion to support zero-emission trucks and buses across the state.
In recent funding rounds, nearly 1,000 HVIP vouchers were provisionally reserved for the Tesla Semi, giving Tesla a far larger share of available funding than any other automaker. An analysis by the Times found that even after revisions to public data, Tesla still accounts for about $165 million in incentives. The next-largest recipient, Canadian bus manufacturer New Flyer, received roughly $68 million.
This is quite unsurprising, however, considering that the Tesla Semi does not have a lot of competition in the zero-emissions trucking segment.
To qualify for HVIP funding, vehicles must be approved by the California Air Resources Board and listed in the program catalog, as noted in an electrive report. When the Tesla Semi voucher applications were submitted, public certification records only showed eligibility for the 2024 model year, with later model years not yet listed.
State officials have stated that certification details often involve confidential business information and that funding will only be paid once vehicles are fully approved and delivered. Still, the first-come, first-served nature of HVIP means large voucher reservations can effectively crowd out competing electric trucks. Incentive amounts for the Semi reportedly ranged from about $84,000 to as much as $351,000 per vehicle after data adjustments.
Unveiled in 2017, the Tesla Semi has seen limited deliveries so far, though CEO Elon Musk has recently reiterated that the Class 8 all-electric truck will enter mass production this year.
Elon Musk
Tesla reveals major info about the Semi as it heads toward ‘mass production’
Some information, like trim levels and their specs were not revealed by Tesla, but now that the Semi is headed toward mass production this year, the company finally revealed those specifics.
Tesla has revealed some major information about the all-electric Semi as it heads toward “mass production,” according to CEO Elon Musk.
The Semi has been working toward a wider production phase after several years of development, pilot programs, and the construction of a dedicated production facility that is specifically catered to the manufacturing of the vehicle.
However, some information, like trim levels and their specs were not revealed by Tesla, but now that the Semi is headed toward mass production this year, the company finally revealed those specifics.
Tesla Semi undergoes major redesign as dedicated factory preps for deliveries
Tesla plans to build a Standard Range and Long Range Trim level of the Semi, and while the range is noted in the company’s newly-released spec list, there is no indication of what battery size will be equipped by them. However, there is a notable weight difference between the two of roughly 3,000 lbs, and the Long Range configuration has a lightning-fast peak charging speed of 1.2 MW.
This information is not available for the Standard Range quite yet.
The spec list is as follows:
- Standard Range:
- 325 miles of range (at 82,000 lbs gross combination weight
- Curb Weight: <20,000
- Energy Consumption: 1.7 kWh per mile
- Powertrain: 3 independent motors on rear axles
- Charging: Up to 60% of range in 30 minutes
- Charge Type: MCS 3.2
- Drive Power: Up to 800 kW
- ePTO (Electric Power Take Off): Up to 25 kW
- Long Range:
- Range: 500 miles (at 82,000 lbs gross combination weight)
- Curb Weight: 23,000 lbs
- Energy Consumption: 1.7 kWh per mile
- Powertrain: 3 independent motors on rear axles
- Charging: Up to 60% of range in 30 minutes
- Charge Type: MCS 3.2
- Peak charging speed: 1.2MW (1,200kW)
- Drive Power: Up to 800 kW
- ePTO (Electric Power Take Off): Up to 25 kW
It is important to keep in mind that the Semi is currently spec’d for local runs, and Tesla has not yet released or developed a sleeper cabin that would be more suitable for longer trips, cross-country hauls, and overnight travel.
Tesla Semi sleeper section and large side storage teased in new video
Instead, the vehicle will be initially used for regional deliveries, as it has in the pilot programs for Pepsi Co. and Frito-Lay for the past several years.
It will enter mass production this year, Musk confirmed on X over the weekend.
Now that the company’s dedicated Semi production facility in Sparks, Nevada, is standing, the timeline seems much more realistic as the vehicle has had its mass manufacturing date adjusted on several occasions.