News
SpaceX set to launch NASA astronauts first after Boeing narrowly avoids catastrophe in space
SpaceX is set to become the first private company to launch NASA astronauts as few as three months from now, all but guaranteed after Boeing’s competing Starliner spacecraft narrowly avoided a catastrophe in space on its orbital launch debut.
The ultimate purpose of NASA’s Commercial Crew Program (CCP) is to ensure that the US is once again able to launch its own astronauts into orbit and to the International Space Station (ISS) – a capability the country has not possessed since it prematurely canceled the Space Shuttle in 2011. In a logical step, NASA decided to fund two independent companies to ensure that astronaut launch capabilities would be insulated against any single failure, ultimately awarding contracts to Boeing and SpaceX in 2014. Boeing did actually try to have Congress snub SpaceX back in 2014 and solely award the contract to Starliner, but the company thankfully failed.
As a result, SpaceX beating Boeing on the (not-a-) race to launch NASA astronauts to the International Space Station (ISS) would represent an immense and deeply embarrassing upset in the traditional aerospace industry – essentially a case of David and Goliath. For the better part of a decade, Congress, most industry officials, and Boeing itself have argued ad nauseum the Starliner spacecraft was clearly a far safer bet than anything built by SpaceX – Boeing, obviously, has far more experience (“heritage”) in the spaceflight industry. However, multiple “catastrophic” failures during Boeing’s recent Starliner ‘Orbital Flight Test’ (OFT) paint a far uglier picture.

As its PR team and executives will constantly remind anyone within earshot, Boeing helped build the first stage of the Saturn V rocket, while a company it bought years after the fact (Rockwell) did technically buy the company (North American) that built the spacecraft (Apollo CSM) that carried NASA astronauts from the Earth to the Moon (and back). Rockwell (acquired by Boeing) also built all five of NASA’s Space Shuttle orbiters.
In the 1990s, Boeing – set to lose a competition to build an expendable rocket for the US military – acquired McDonnell Douglas at the last second, slapping a Boeing sticker on the Delta IV rocket – designed and built by MD. Boeing then conspired to steal trade secrets from Lockheed Martin (bidding Atlas V) and used that stolen info to mislead the USAF about the real cost of Delta IV, thus securing the more lucrative of two possible contracts. This is all to point out the simple fact that Boeing has far less real experience designing spacecraft than it tends to act like it does.

As such, it’s substantially less surprising than it might otherwise be that Boeing’s Starliner spacecraft has had such a rocky orbital launch debut. Preceded just a matter of weeks by a quality assurance failure that prevented one of Starliner’s four parachutes from deploying after an otherwise-successful pad abort test, a second Starliner spacecraft launched atop an Atlas V rocket on its orbital launch debut (OFT) on December 20th, 2019. Atlas V performed flawlessly but immediately after Starliner separated from the rocket, things went very wrong.
Bad software ultimately caused the spacecraft to perform thousands of uncommanded maneuvering thruster burns, depleting a majority of its propellant before Boeing was able to intervene. Starliner managed to place itself in low Earth orbit (LEO), but by then it had nowhere near enough propellant left to rendezvous and dock with the ISS – one of the most crucial purposes of the uncrewed flight test. Unable to complete that part of the mission, Boeing instead did a few small tests over the course of 48 hours in orbit before commanding the spacecraft’s reentry and landing on December 22nd.

But wait, there’s more!
As it turns out, although both NASA and Boeing inexplicably withheld the information from the public for more than two months, Boeing’s OFT Starliner spacecraft reportedly almost suffered a second major software failure just hours before reentry. According to NASA and Boeing comments in a press conference held only after news of that second failure broke after an advisory panel broached the issue in February 2020, a second Starliner software bug – caught only because the first failure forced Boeing to double-check its code – could have had far more catastrophic consequences.
NASA officials stated that had the second bug not been caught, some of Starliner’s thruster valves would have been frozen, either entirely preventing or severely hampering the spacecraft’s detached trunk from properly maneuvering in orbit. Apparently, that service module (carrying fuel, abort engines, a solar array, and more) could have crashed into the crew module shortly after detaching from it. Unsurprisingly, that ‘recontact’ could have severely damaged the Starliner crew capsule, potentially making reentry impossible (or even fatal) if its relatively fragile heat shield bore the brunt of that impact.
SpaceX has undeniably suffered its own significant failures, most notably when flight-proven Crew Dragon capsule C201 exploded moments before a static fire test, but the company has already proven that it fixed the source of the failure with the spacecraft’s second successful launch on a Falcon 9 rocket. Ultimately, it’s becoming nearly impossible to rationally argue that Boeing’s Starliner will be safer than SpaceX’s Crew Dragon – let alone worth the 40% premium Boeing is charging NASA and the US taxpayer.


According to Ars Technica’s Eric Berger, Crew Dragon’s inaugural astronaut launch is now tentatively scheduled as early as late-April to late-May 2020. Paperwork – not technical hurdles – is currently the source of that uncertainty, and all Demo-2 mission hardware (Falcon 9 and Crew Dragon) is either already in Florida or days away from arriving.
Due to the combination of similar software failures Starliner suffered during its first and only launch, Boeing now has to review the entirety of the spacecraft’s software – more than a million lines of code – before NASA will allow the company to launch again. There’s also a very good chance that Boeing will now have to repeat the Orbital Flight Test, potentially incurring major delays. In short, it would take nothing less than a miracle – or NASA making a public mockery of itself for Boeing’s benefit – for Starliner to launch astronauts before SpaceX.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Cybertruck
Tesla updates Cybertruck owners about key Powershare feature
Tesla is updating Cybertruck owners on its timeline of a massive feature that has yet to ship: Powershare with Powerwall.
Powershare is a bidirectional charging feature exclusive to Cybertruck, which allows the vehicle’s battery to act as a portable power source for homes, appliances, tools, other EVs, and more. It was announced in late 2023 as part of Tesla’s push into vehicle-to-everything energy sharing, and acting as a giant portable charger is the main advantage, as it can provide backup power during outages.
Cybertruck’s Powershare system supports both vehicle-to-load (V2L) and vehicle-to-home (V2H), making it flexible and well-rounded for a variety of applications.
However, even though the feature was promised with Cybertruck, it has yet to be shipped to vehicles. Tesla communicated with owners through email recently regarding Powershare with Powerwall, which essentially has the pickup act as an extended battery.
Powerwall discharge would be prioritized before tapping into the truck’s larger pack.
However, Tesla is still working on getting the feature out to owners, an email said:
“We’re writing to let you know that the Powershare with Powerwall feature is still in development and is now scheduled for release in mid-2026.
This new release date gives us additional time to design and test this feature, ensuring its ability to communicate and optimize energy sharing between your vehicle and many configurations and generations of Powerwall. We are also using this time to develop additional Powershare features that will help us continue to accelerate the world’s transition to sustainable energy.”
Owners have expressed some real disappointment in Tesla’s continuous delays in releasing the feature, as it was expected to be released by late 2024, but now has been pushed back several times to mid-2026, according to the email.
Foundation Series Cybertruck buyers paid extra, expecting the feature to be rolled out with their vehicle upon pickup.
Cybertruck’s Lead Engineer, Wes Morrill, even commented on the holdup:
As a Cybertruck owner who also has Powerwall, I empathize with the disappointed comments.
To their credit, the team has delivered powershare functionality to Cybertruck customers who otherwise have no backup with development of the powershare gateway. As well as those with solar…
— Wes (@wmorrill3) December 12, 2025
He said that “it turned out to be much harder than anticipated to make powershare work seamlessly with existing Powerwalls through existing wall connectors. Two grid-forming devices need to negotiate who will form and who will follow, depending on the state of charge of each, and they need to do this without a network and through multiple generations of hardware, and test and validate this process through rigorous certifications to ensure grid safety.”
It’s nice to see the transparency, but it is justified for some Cybertruck owners to feel like they’ve been bait-and-switched.
News
Tesla’s northernmost Supercharger in North America opens
Tesla has opened its northernmost Supercharger in Fairbanks, Alaska, with eight V4 stalls located in one of the most frigid cities in the U.S.
Located just 196 miles from the Arctic Circle, Fairbanks’s average temperature for the week was around -12 degrees Fahrenheit. However, there are plenty of Tesla owners in Alaska who have been waiting for more charging options out in public.
There are only 36 total Supercharger stalls in Alaska, despite being the largest state in the U.S.
Eight Superchargers were added to Fairbanks, which will eventually be a 48-stall station. Tesla announced its activation today:
North America’s northernmost Supercharger Fairbanks, AK (8 stalls) opened to public. https://t.co/M4l04DZ6B5 pic.twitter.com/zyL6bDuA93
— Tesla Charging (@TeslaCharging) December 12, 2025
The base price per kWh is $0.43 at the Fairbanks Supercharger. Thanks to its V4 capabilities, it can charge at speeds up to 325 kW.
Despite being the northernmost Supercharger in North America, it is not even in the Top 5 northernmost Superchargers globally, because Alaska is south of Norway. The northernmost Supercharger is in Honningsvåg, Norway. All of the Top 5 are in the Scandanavian country.
Tesla’s Supercharger expansion in 2025 has been impressive, and although it experienced some early-quarter slowdowns due to V3-to-V4 hardware transitions, it has been the company’s strongest year for deployments.
🚨🚨 Tesla Supercharging had a HUGE year, and they deserve to be recognized.
🍔 Opened Tesla Diner, a drive-in movie theater with awesome, Chef-curated cuisine
🔌 Gave access to Superchargers to several EV makers, including Hyundai, Genesis, Mercedes-Benz, Kia, Lucid, Toyota,… pic.twitter.com/yYT2QEbqoW
— TESLARATI (@Teslarati) December 10, 2025
Through the three quarters of 2025, the company has added 7,753 stations and 73,817 stalls across the world, a 16 percent increase in stations and an 18 percent increase in stalls compared to last year.
Tesla is on track to add over 12,000 stalls for the full year, achieving an average of one new stall every hour, an impressive statistic.
Recently, the company wrapped up construction at its Supercharger Oasis in Lost Hills, California, a 168-stall Supercharger that Tesla Solar Panels completely power. It is the largest Supercharger in the world.
News
Tesla shocks with latest Robotaxi testing move
Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”
Tesla Model S vehicles were spotted performing validation testing with LiDAR rigs in California today, a pretty big switch-up compared to what we are used to seeing on the roads.
Tesla utilizes the Model Y crossover for its Robotaxi fleet. It is adequately sized, the most popular vehicle in its lineup, and is suitable for a wide variety of applications. It provides enough luxury for a single rider, but enough room for several passengers, if needed.
However, the testing has seemingly expanded to one of Tesla’s premium flagship offerings, as the Model S was spotted with the validation equipment that is seen entirely with Model Y vehicles. We have written several articles on Robotaxi testing mules being spotted across the United States, but this is a first:
🚨 Tesla is using Model S vehicles fitted with LiDAR rigs to validate FSD and Robotaxi, differing from the Model Ys that it uses typically
Those Model Y vehicles have been on the East Coast for some time. These Model S cars were spotted in California https://t.co/CN9Bw5Wma8 pic.twitter.com/UE55hx5mdd
— TESLARATI (@Teslarati) December 11, 2025
Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”
It seems to hint that Tesla could add a premium, more luxury offering to its Robotaxi platform eventually. Think about it: Uber has Uber Black, Lyft has Lyft Black. These vehicles and services are associated with a more premium cost as they combine luxury models with more catered transportation options.
Tesla could be testing the waters here, and it could be thinking of adding the Model S to its fleet of ride-hailing vehicles.
Reluctant to remove the Model S from its production plans completely despite its low volume contributions to the overall mission of transitioning the world to sustainable energy, the flagship sedan has always meant something. CEO Elon Musk referred to it, along with its sibling Model X, as continuing on production lines due to “sentimental reasons.”
However, its purpose might have been expanded to justify keeping it around, and why not? It is a cozy, premium offering, and it would be great for those who want a little more luxury and are willing to pay a few extra dollars.
Of course, none of this is even close to confirmed. However, it is reasonable to speculate that the Model S could be a potential addition to the Robotaxi fleet. It’s capable of all the same things the Model Y is, but with more luxuriousness, and it could be the perfect addition to the futuristic fleet.