News
SpaceX’s returning Hyperloop champion prepares to hit 372 mph on July 21 competition
For the fourth year in a row, SpaceX will be holding its Hyperloop Pod Competition. The event, which features teams of students from universities across the globe, is expected to raise the game this year, with returning champion TUM Hyperloop (formerly WARR Hyperloop) from the Technical University of Munich looking to hit half the speed of sound with its upgraded pod.
TUM has been competing in SpaceX’s Hyperloop Pod Competitions since the first tournament was held in 2015. The team has created a reputation for creating incredibly quick pods over the years, even beating the 240 mph record set by Virgin Hyperloop in 2018 with an impressive 290 mph run. Even more notable was that TUM was able to accomplish this feat at SpaceX’s Hyperloop test track, which is only 0.8 miles long.
Inasmuch as this was impressive, the student team from Munich is not resting on their laurels this year. SpaceX requires returning participants to the Hyperloop Pod Competition to introduce upgrades and revisions to their past pod designs, and that is exactly what TUM did. The new pod, christened simply as Pod IV, is almost 1.70 meters (5.57 feet) long, 50 cm (19.6 inches) wide and weighs approximately 70 kg (154 lbs), almost 8 kg (17.6 lbs) lighter than 2018’s Pod III, which hit a record-setting speed of 290 mph the previous year.
In a press release, TUM Hyperloop Team Manager Toni Jukic stated that the team is looking to hit a highly ambitious goal this year. “This year we plan to reach at least half the speed of sound, over 600 kilometers per hour (372 mph),” he said. Putting that figure into perspective, Pod IV would have to go 40% faster than its pod last year, hitting 372 mph and decelerating to zero in 0.8 miles.
Ambitious goal aside, this year will likely not be easy for TUM Hyperloop, especially considering that among its competitors is the UNSW Hyperloop team from Australia, which has a pretty unique experience in terms of rapid sustainable transportation. The UNSW has seen success in other innovative transport solutions, with students from the university’s Sunswift team setting a new efficiency record at the World Solar Challenge using a solar racing car that completed a 4,100 km (2,500 mile) journey across Australia in just six days.
In a statement to The Driven, UNSW Hyperloop team manager Harry Zhang noted that the team had to work really hard to make it to SpaceX’s competition. “It was quite grueling because we had to apply to compete, then do several design packages over the summer and then finally get accepted in February to be invited to go to SpaceX’s headquarters in Hawthorne, California. The people who do compete and make it through the multiple rounds of elimination are quite revered in engineering around the world,” he said.
Another team that TUM Hyperloop would likely need to watch out for is Team Delft from the Netherlands. Delft won the coveted overall best pod award in SpaceX’s first Hyperloop Competition, and it was able to reach the finals last year together with TUM (then called Team WARR) and Team EPFLoop from Switzerland. Unfortunately, Delft experienced major issues in the finals, resulting in the team’s pod reaching speeds of only 88 mph before stalling. With a chance at redemption this year with a new, improved pod, Delft Hyperloop could be returning to the SpaceX Hyperloop Competition with a purpose.
The SpaceX Hyperloop Pod Competition is scheduled to be held on July 21, 2019 at the SpaceX headquarters in Hawthorne, CA. Similar to last year’s competition, participants for this year’s tournament will be judged on one key metric: top speed.
News
Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.
Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage.
These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.
FSD mileage milestones
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities.
City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos.
Tesla’s data edge
Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own.
So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.”
“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.