Connect with us

News

SpaceX’s returning Hyperloop champion prepares to hit 372 mph on July 21 competition

(Photo: TUM Hyperloop)

Published

on

For the fourth year in a row, SpaceX will be holding its Hyperloop Pod Competition. The event, which features teams of students from universities across the globe, is expected to raise the game this year, with returning champion TUM Hyperloop (formerly WARR Hyperloop) from the Technical University of Munich looking to hit half the speed of sound with its upgraded pod. 

TUM has been competing in SpaceX’s Hyperloop Pod Competitions since the first tournament was held in 2015. The team has created a reputation for creating incredibly quick pods over the years, even beating the 240 mph record set by Virgin Hyperloop in 2018 with an impressive 290 mph run. Even more notable was that TUM was able to accomplish this feat at SpaceX’s Hyperloop test track, which is only 0.8 miles long. 

Inasmuch as this was impressive, the student team from Munich is not resting on their laurels this year. SpaceX requires returning participants to the Hyperloop Pod Competition to introduce upgrades and revisions to their past pod designs, and that is exactly what TUM did. The new pod, christened simply as Pod IV, is almost 1.70 meters (5.57 feet) long, 50 cm (19.6 inches) wide and weighs approximately 70 kg (154 lbs), almost 8 kg (17.6 lbs) lighter than 2018’s Pod III, which hit a record-setting speed of 290 mph the previous year.

In a press release, TUM Hyperloop Team Manager Toni Jukic stated that the team is looking to hit a highly ambitious goal this year.  “This year we plan to reach at least half the speed of sound, over 600 kilometers per hour (372 mph),” he said. Putting that figure into perspective, Pod IV would have to go 40% faster than its pod last year, hitting 372 mph and decelerating to zero in 0.8 miles. 

Ambitious goal aside, this year will likely not be easy for TUM Hyperloop, especially considering that among its competitors is the UNSW Hyperloop team from Australia, which has a pretty unique experience in terms of rapid sustainable transportation. The UNSW has seen success in other innovative transport solutions, with students from the university’s Sunswift team setting a new efficiency record at the World Solar Challenge using a solar racing car that completed a 4,100 km (2,500 mile) journey across Australia in just six days. 

Advertisement
-->

In a statement to The Driven, UNSW Hyperloop team manager Harry Zhang noted that the team had to work really hard to make it to SpaceX’s competition. “It was quite grueling because we had to apply to compete, then do several design packages over the summer and then finally get accepted in February to be invited to go to SpaceX’s headquarters in Hawthorne, California. The people who do compete and make it through the multiple rounds of elimination are quite revered in engineering around the world,” he said. 

Another team that TUM Hyperloop would likely need to watch out for is Team Delft from the Netherlands. Delft won the coveted overall best pod award in SpaceX’s first Hyperloop Competition, and it was able to reach the finals last year together with TUM (then called Team WARR) and Team EPFLoop from Switzerland. Unfortunately, Delft experienced major issues in the finals, resulting in the team’s pod reaching speeds of only 88 mph before stalling. With a chance at redemption this year with a new, improved pod, Delft Hyperloop could be returning to the SpaceX Hyperloop Competition with a purpose. 

The SpaceX Hyperloop Pod Competition is scheduled to be held on July 21, 2019 at the SpaceX headquarters in Hawthorne, CA. Similar to last year’s competition, participants for this year’s tournament will be judged on one key metric: top speed.

Simon is an experienced automotive reporter with a passion for electric cars and clean energy. Fascinated by the world envisioned by Elon Musk, he hopes to make it to Mars (at least as a tourist) someday. For stories or tips--or even to just say a simple hello--send a message to his email, simon@teslarati.com or his handle on X, @ResidentSponge.

Advertisement
Comments

Elon Musk

Elon Musk’s xAI brings 1GW Colossus 2 AI training cluster online

Elon Musk shared his update in a recent post on social media platform X.

Published

on

xAI-supercomputer-memphis-environment-pushback
Credit: xAI

xAI has brought its Colossus 2 supercomputer online, making it the first gigawatt-scale AI training cluster in the world, and it’s about to get even bigger in a few months.

Elon Musk shared his update in a recent post on social media platform X.

Colossus 2 goes live

The Colossus 2 supercomputer, together with its predecessor, Colossus 1, are used by xAI to primarily train and refine the company’s Grok large language model. In a post on X, Musk stated that Colossus 2 is already operational, making it the first gigawatt training cluster in the world. 

But what’s even more remarkable is that it would be upgraded to 1.5 GW of power in April. Even in its current iteration, however, the Colossus 2 supercomputer already exceeds the peak demand of San Francisco.  

Commentary from users of the social media platform highlighted the speed of execution behind the project. Colossus 1 went from site preparation to full operation in 122 days, while Colossus 2 went live by crossing the 1-GW barrier and is targeting a total capacity of roughly 2 GW. This far exceeds the speed of xAI’s primary rivals.

Advertisement
-->

Funding fuels rapid expansion

xAI’s Colossus 2 launch follows xAI’s recently closed, upsized $20 billion Series E funding round, which exceeded its initial $15 billion target. The company said the capital will be used to accelerate infrastructure scaling and AI product development.

The round attracted a broad group of investors, including Valor Equity Partners, Stepstone Group, Fidelity Management & Research Company, Qatar Investment Authority, MGX, and Baron Capital Group. Strategic partners NVIDIA and Cisco also continued their support, helping xAI build what it describes as the world’s largest GPU clusters.

xAI said the funding will accelerate its infrastructure buildout, enable rapid deployment of AI products to billions of users, and support research tied to its mission of understanding the universe. The company noted that its Colossus 1 and 2 systems now represent more than one million H100 GPU equivalents, alongside recent releases including the Grok 4 series, Grok Voice, and Grok Imagine. Training is also already underway for its next flagship model, Grok 5.

Continue Reading

Elon Musk

Tesla AI5 chip nears completion, Elon Musk teases 9-month development cadence

The Tesla CEO shared his recent insights in a post on social media platform X.

Published

on

Credit: Tesla

Tesla’s next-generation AI5 chip is nearly complete, and work on its successor is already underway, as per a recent update from Elon Musk. 

The Tesla CEO shared his recent insights in a post on social media platform X.

Musk details AI chip roadmap

In his post, Elon Musk stated that Tesla’s AI5 chip design is “almost done,” while AI6 has already entered early development. Musk added that Tesla plans to continue iterating rapidly, with AI7, AI8, AI9, and future generations targeting a nine-month design cycle. 

He also noted that Tesla’s in-house chips could become the highest-volume AI processors in the world. Musk framed his update as a recruiting message, encouraging engineers to join Tesla’s AI and chip development teams.

Tesla community member Herbert Ong highlighted the strategic importance of the timeline, noting that faster chip cycles enable quicker learning, faster iteration, and a compounding advantage in AI and autonomy that becomes increasingly difficult for competitors to close.

Advertisement
-->

AI5 manufacturing takes shape

Musk’s comments align with earlier reporting on AI5’s production plans. In December, it was reported that Samsung is preparing to manufacture Tesla’s AI5 chip, accelerating hiring for experienced engineers to support U.S. production and address complex foundry challenges.

Samsung is one of two suppliers selected for AI5, alongside TSMC. The companies are expected to produce different versions of the AI5 chip, with TSMC reportedly using a 3nm process and Samsung using a 2nm process.

Musk has previously stated that while different foundries translate chip designs into physical silicon in different ways, the goal is for both versions of the Tesla AI5 chip to operate identically. AI5 will succeed Tesla’s current AI4 hardware, formerly known as Hardware 4, and is expected to support the company’s Full Self-Driving system as well as other AI-driven efforts, including Optimus.

Continue Reading

News

Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.

Published

on

Credit: ANCAP

The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.

The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring. 

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.

The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.  

ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.

Advertisement
-->

“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.

“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.

Continue Reading