Connect with us

News

SpaceX nails reused booster launch, Falcon Heavy’s maiden flight days away

Published

on

Despite a brief 24-hour delay due to weather and minor mechanical issues, SpaceX recycled the launch opportunity and completed the mission on Wednesday afternoon, January 31. Tasked with carrying GovSat-1 to orbit, the reused Falcon 9 rocket (Booster 1032) performed flawlessly and as expected, although the stage was expended. Launch directors confirmed just before the end of the live webcast that the communications satellite, a public-private partnership between SES and Luxembourg, was placed into a good orbit a few minutes before it separated from Falcon 9’s second stage. The mission marks SpaceX’s second successful launch of 2018, its first reused flight of the year, and the last launch before Falcon Heavy’s inaugural flight – currently scheduled for Tuesday, February 6.

Perhaps most intriguingly (or at least uniquely), the to-be-expended booster was still seen outfitted with both grid fins and landing legs at the launch pad, the new legs a stark white against the dark and sooty backdrop of the Falcon 9’s recycled booster. While SpaceX’s webcast host very explicitly stated at least three times that the first stage was not going to be recovered, careful listeners may have still caught snippets of the launch and recovery directors announcing different milestones as Falcon 9 S1 landed softly in the Atlantic Ocean. Similar to the recovery operations after the launch of Iridium-4 in December 2018, S1 flew as if it were landing aboard a drone ship, although in the case of this launch that theatricality extended even to landing legs.

While it may seem quite odd that SpaceX would choose to expend an entire, recoverable rocket, it is presumed that SpaceX is simply choosing to rid itself of a stock of older boosters incapable of flying more than once or twice – preparing for the introduction of the highly reusable Block 5 of Falcon 9, in other words. As stated by the webcast host, a SpaceX engineer, the company’s goal is for boosters to last “tens of launches in the short term, and hundreds or thousands of launches in the long term.” It is worth remembering that expending rocket boosters in the ocean (or even over land for Russia and China) is the status quo of all non-SpaceX rockets, and SpaceX has only just begun to perfect booster recovery and reuse – the first successful ocean recovery was completed less than two years ago. The very fact that it already feels odd or even wrong to “throw away” hardware into the ocean after launch is a testament to just how rapidly SpaceX have changed both the figurative and literal paradigms of orbital rocketry, and it is only a matter of time before the eminently persistent company ends the practice of expendable launches internally, if not globally.

Up next, Falcon Heavy

After yet another successful mission for SpaceX, the company’s Florida efforts will now briefly focus on the imminent inaugural launch of Falcon Heavy, the company’s newest and largest rocket. Loosely penciled in for liftoff on Tuesday, February 6, the massive vehicle will become the most powerful and capable operational rocket in the world, comparable only to the likes of NASA’s Saturn V and Space Shuttle, as well as the Soviet Union’s short-lived Energia. Regardless of its place against a historical backdrop of massive state-funded rockets, Falcon Heavy will by default become the most powerful commercial launch vehicle ever developed, and that title will almost certainly remain uncontested until 2020 at the absolute earliest. If or when the first and smallest version of NASA’s SLS rocket launches, likely also no earlier than 2020, the space agency may well take the crown back for a brief year or so. Regardless, SpaceX will likely be regularly launching Falcon Heavies and nearing the tail end of the development and testing of its much larger BFR rocket and spaceship.

Falcon Heavy will be the clearest progress yet towards such a massive rocket, and will provide SpaceX with invaluable experience and expertise as the only private company to ever operate a super heavy-lift launch vehicle (SHLLV). After a solid four weeks of near-constant testing, bug-fixing, and retesting, Falcon Heavy just days ago completed its first static fire, marking the first point in its history that all 27 of its first stage engines were simultaneously ignited. The data produced by that crucial test was apparently satisfactory, and Elon Musk just yesterday reiterated that the vehicle’s first launch was still targeting February 6.

Follow along live as launch photographer Tom Cross and your intrepid author cover these groundbreaking events live.

Teslarati   –   Instagram Twitter

Tom CrossInstagram

Eric Ralph Twitter

 

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Continue Reading

Elon Musk

Tesla Giga Texas to feature massive Optimus V4 production line

This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.

Published

on

Credit: Tesla/YouTube

Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.  

Optimus 4 production

In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas. 

This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4. 

“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated. 

How big Optimus could become

During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world. 

“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP. 

“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated. 

Continue Reading

Elon Musk

Rumored SpaceX-xAI merger gets apparent confirmation from Elon Musk

The comment follows reports that the rocket maker is weighing a transaction that could further consolidate Musk’s space and AI ventures.

Published

on

Credit: xAI

Elon Musk appeared to confirm reports that SpaceX is exploring a potential merger with artificial intelligence startup xAI by responding positively to a post about the reported transaction on X.

Musk’s comment follows reports that the rocket maker is weighing a transaction that could further consolidate his space and AI ventures.

SpaceX xAI merger

As per a recent Reuters report, SpaceX has held discussions about merging with xAI, with the proposed structure potentially involving an exchange of xAI shares for SpaceX stock. The value, structure, and timing of any deal have not been finalized, and no agreement has been signed.

Musk appeared to acknowledge the report in a brief reply on X, responding “Yeah” to a post that described SpaceX as a future “Dyson Swarm company.” The comment references a Dyson Swarm, a sci-fi megastructure concept that consists of a massive network of satellites or structures that orbit a celestial body to harness its energy. 

Reuters noted that two entities were formed in Nevada on January 21 to facilitate a potential transaction for the possible SpaceX-xAI merger. The discussions remain ongoing, and a transaction is not yet guaranteed, however.

AI and space infrastructure

A potential merger with xAI would align with Musk’s stated strategy of integrating artificial intelligence development with space-based systems. Musk has previously said that space-based infrastructure could support large-scale computing by leveraging continuous solar energy, an approach he has framed as economically scalable over time.

xAI already has operational ties to Musk’s other companies. The startup develops Grok, a large language model that holds a U.S. Department of Defense contract valued at up to $200 million. AI also plays a central role in SpaceX’s Starlink and Starshield satellite programs, which rely on automation and machine learning for network management and national security applications.

Musk has previously consolidated his businesses through share-based transactions, including Tesla’s acquisition of SolarCity in 2016 and xAI’s acquisition of X last year. Bloomberg has also claimed that Musk is considering a merger between SpaceX and Tesla in the future. 

Continue Reading