News
SpaceX, NASA moving forward with plans to build second Dragon launch pad
SpaceX and NASA officials have confirmed that they are moving forward with plans to modify the company’s second Florida launch pad to support Crew and Cargo Dragon missions.
First reported by Reuters in June 2022, SpaceX began studying the possibility of modifying its Cape Canaveral Space Force Station (CCSFS) LC-40 pad for Dragon missions earlier this year after NASA raised concerns about the risks posed by plans to operate its next-generation Starship rocket out of the only pad available for Dragon. Three months later, the partners have committed to that plan and, according to SpaceX, hardware for the required modifications is already in work.
After a false-start in 2019 and 2020, SpaceX began rapidly constructing Starship’s first Florida launch site at the LC-39A pad it leases from NASA’s Kennedy Space Center (KSC) earlier this year. Thanks to a series of modifications and additions to existing Space Shuttle infrastructure, Pad 39A is also the only site currently capable of launching Crew and Cargo Dragon spacecraft on Falcon 9 rockets. Located just 1000 feet (~300 m) east of 39A’s existing Falcon and Dragon launch facilities and access tower, Starship is unlikely to have much of an impact during nominal operations, but the program does have a history of building prototypes that occasionally explode.
Until late 2023 at the absolute earliest, SpaceX’s Crew Dragon is the only spacecraft capable of sustaining NASA’s presence (typically 4-5 astronauts) at the International Space Station (ISS). Years behind schedule, Boeing’s Starliner crew capsule is scheduled to attempt its first crewed test flight (CTF) no sooner than February 2023. Starliner’s first operational astronaut transport mission could then follow in September 2023, but it could easily slip into 2024 if the CTF is less than flawless. To date, both of Starliner’s uncrewed test flights have uncovered significant issues that required months of additional work to rectify.
When a Falcon 9 rocket exploded at LC-40 in 2016, causing damage that effectively required a total rebuild, it took SpaceX 15 months to resurrect the pad. In other words, if a Starship launch failed and destroyed Pad 39A’s Falcon and Dragon facilities at some point within the next 12-18 months, it could easily threaten NASA’s ability to maintain the ISS if Boeing was unable to take over.
Even though SpaceX would never risk launching Starship out of Pad 39A if it knew there was a high risk of the new rocket failing and harming Dragon operations, NASA is in the business of ensuring that contingencies exist in case of unlikely but catastrophic events. It doesn’t matter if Starship probably won’t explode or if Starliner will probably be ready to take over. The risk is always there and SpaceX and NASA must be ready for the possibility.
Nothing is known about the nature of the modifications that LC-40 will require. But more likely than not, NASA will require SpaceX to develop something similar to Pad 39A’s facilities. That would involve building a new crew access tower, crew access arm, escape system (39A uses baskets and ziplines), and an on-site bunker for astronauts.
Given that the need for a backup Dragon launch pad comes largely at NASA’s behest, there’s a good chance that the agency will require that that backup be in place before SpaceX will be allowed to launch Starship out of Pad 39A. Earlier this month, CEO Elon Musk delayed his estimate for the first Florida Starship launch from late 2022 to Q2 2023. It’s highly unlikely that SpaceX will be able to finish modifying LC-40 by Q2 2023.
SpaceX will have to undertake the already challenging, time-sensitive construction project on a high-security military base and well within the blast radius of the single most active launch pad in the world. Much of the custom hardware required could have significant lead times, further extending the construction timeline. Unless SpaceX is willing to seriously constrain LC-40’s launch cadence, which would likely make its goals of 60+ launches in 2022 and up to 100 Falcon launches in 2023 impossible, the work will take even longer than it would under ordinary circumstances.
Elon Musk
Tesla owners surpass 8 billion miles driven on FSD Supervised
Tesla shared the milestone as adoption of the system accelerates across several markets.
Tesla owners have now driven more than 8 billion miles using Full Self-Driving Supervised, as per a new update from the electric vehicle maker’s official X account.
Tesla shared the milestone as adoption of the system accelerates across several markets.
“Tesla owners have now driven >8 billion miles on FSD Supervised,” the company wrote in its post on X. Tesla also included a graphic showing FSD Supervised’s miles driven before a collision, which far exceeds that of the United States average.
The growth curve of FSD Supervised’s cumulative miles over the past five years has been notable. As noted in data shared by Tesla watcher Sawyer Merritt, annual FSD (Supervised) miles have increased from roughly 6 million in 2021 to 80 million in 2022, 670 million in 2023, 2.25 billion in 2024, and 4.25 billion in 2025. In just the first 50 days of 2026, Tesla owners logged another 1 billion miles.
At the current pace, the fleet is trending towards hitting about 10 billion FSD Supervised miles this year. The increase has been driven by Tesla’s growing vehicle fleet, periodic free trials, and expanding Robotaxi operations, among others.
Tesla also recently updated the safety data for FSD Supervised on its website, covering North America across all road types over the latest 12-month period.
As per Tesla’s figures, vehicles operating with FSD Supervised engaged recorded one major collision every 5,300,676 miles. In comparison, Teslas driven manually with Active Safety systems recorded one major collision every 2,175,763 miles, while Teslas driven manually without Active Safety recorded one major collision every 855,132 miles. The U.S. average during the same period was one major collision every 660,164 miles.
During the measured period, Tesla reported 830 total major collisions with FSD (Supervised) engaged, compared to 16,131 collisions for Teslas driven manually with Active Safety and 250 collisions for Teslas driven manually without Active Safety. Total miles logged exceeded 4.39 billion miles for FSD (Supervised) during the same timeframe.
Elon Musk
The Boring Company’s Music City Loop gains unanimous approval
After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project.
The Metro Nashville Airport Authority (MNAA) has approved a 40-year agreement with Elon Musk’s The Boring Company to build the Music City Loop, a tunnel system linking Nashville International Airport to downtown.
After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project. Under the terms, The Boring Company will pay the airport authority an annual $300,000 licensing fee for the use of roughly 933,000 square feet of airport property, with a 3% annual increase.
Over 40 years, that totals to approximately $34 million, with two optional five-year extensions that could extend the term to 50 years, as per a report from The Tennesean.
The Boring Company celebrated the Music City Loop’s approval in a post on its official X account. “The Metropolitan Nashville Airport Authority has unanimously (7-0) approved a Music City Loop connection/station. Thanks so much to @Fly_Nashville for the great partnership,” the tunneling startup wrote in its post.
Once operational, the Music City Loop is expected to generate a $5 fee per airport pickup and drop-off, similar to rideshare charges. Airport officials estimate more than $300 million in operational revenue over the agreement’s duration, though this projection is deemed conservative.
“This is a significant benefit to the airport authority because we’re receiving a new way for our passengers to arrive downtown at zero capital investment from us. We don’t have to fund the operations and maintenance of that. TBC, The Boring Co., will do that for us,” MNAA President and CEO Doug Kreulen said.
The project has drawn both backing and criticism. Business leaders cited economic benefits and improved mobility between downtown and the airport. “Hospitality isn’t just an amenity. It’s an economic engine,” Strategic Hospitality’s Max Goldberg said.
Opponents, including state lawmakers, raised questions about environmental impacts, worker safety, and long-term risks. Sen. Heidi Campbell said, “Safety depends on rules applied evenly without exception… You’re not just evaluating a tunnel. You’re evaluating a risk, structural risk, legal risk, reputational risk and financial risk.”
Elon Musk
Tesla announces crazy new Full Self-Driving milestone
The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.
Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.
The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.
On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.
Tesla owners have now driven >8 billion miles on FSD Supervisedhttps://t.co/0d66ihRQTa pic.twitter.com/TXz9DqOQ8q
— Tesla (@Tesla) February 18, 2026
The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.
The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.
Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.
Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.
This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.
The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.