Connect with us

News

SpaceX, NASA moving forward with plans to build second Dragon launch pad

Published

on

SpaceX and NASA officials have confirmed that they are moving forward with plans to modify the company’s second Florida launch pad to support Crew and Cargo Dragon missions.

First reported by Reuters in June 2022, SpaceX began studying the possibility of modifying its Cape Canaveral Space Force Station (CCSFS) LC-40 pad for Dragon missions earlier this year after NASA raised concerns about the risks posed by plans to operate its next-generation Starship rocket out of the only pad available for Dragon. Three months later, the partners have committed to that plan and, according to SpaceX, hardware for the required modifications is already in work.

After a false-start in 2019 and 2020, SpaceX began rapidly constructing Starship’s first Florida launch site at the LC-39A pad it leases from NASA’s Kennedy Space Center (KSC) earlier this year. Thanks to a series of modifications and additions to existing Space Shuttle infrastructure, Pad 39A is also the only site currently capable of launching Crew and Cargo Dragon spacecraft on Falcon 9 rockets. Located just 1000 feet (~300 m) east of 39A’s existing Falcon and Dragon launch facilities and access tower, Starship is unlikely to have much of an impact during nominal operations, but the program does have a history of building prototypes that occasionally explode.

Until late 2023 at the absolute earliest, SpaceX’s Crew Dragon is the only spacecraft capable of sustaining NASA’s presence (typically 4-5 astronauts) at the International Space Station (ISS). Years behind schedule, Boeing’s Starliner crew capsule is scheduled to attempt its first crewed test flight (CTF) no sooner than February 2023. Starliner’s first operational astronaut transport mission could then follow in September 2023, but it could easily slip into 2024 if the CTF is less than flawless. To date, both of Starliner’s uncrewed test flights have uncovered significant issues that required months of additional work to rectify.

When a Falcon 9 rocket exploded at LC-40 in 2016, causing damage that effectively required a total rebuild, it took SpaceX 15 months to resurrect the pad. In other words, if a Starship launch failed and destroyed Pad 39A’s Falcon and Dragon facilities at some point within the next 12-18 months, it could easily threaten NASA’s ability to maintain the ISS if Boeing was unable to take over.

Even though SpaceX would never risk launching Starship out of Pad 39A if it knew there was a high risk of the new rocket failing and harming Dragon operations, NASA is in the business of ensuring that contingencies exist in case of unlikely but catastrophic events. It doesn’t matter if Starship probably won’t explode or if Starliner will probably be ready to take over. The risk is always there and SpaceX and NASA must be ready for the possibility.

Nothing is known about the nature of the modifications that LC-40 will require. But more likely than not, NASA will require SpaceX to develop something similar to Pad 39A’s facilities. That would involve building a new crew access tower, crew access arm, escape system (39A uses baskets and ziplines), and an on-site bunker for astronauts.

Given that the need for a backup Dragon launch pad comes largely at NASA’s behest, there’s a good chance that the agency will require that that backup be in place before SpaceX will be allowed to launch Starship out of Pad 39A. Earlier this month, CEO Elon Musk delayed his estimate for the first Florida Starship launch from late 2022 to Q2 2023. It’s highly unlikely that SpaceX will be able to finish modifying LC-40 by Q2 2023.

SpaceX will have to undertake the already challenging, time-sensitive construction project on a high-security military base and well within the blast radius of the single most active launch pad in the world. Much of the custom hardware required could have significant lead times, further extending the construction timeline. Unless SpaceX is willing to seriously constrain LC-40’s launch cadence, which would likely make its goals of 60+ launches in 2022 and up to 100 Falcon launches in 2023 impossible, the work will take even longer than it would under ordinary circumstances.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Robotaxi ride-hailing without a Safety Monitor proves to be difficult

Published

on

Credit: Grok Imagine

Tesla Robotaxi ride-hailing without a Safety Monitor is proving to be a difficult task, according to some riders who made the journey to Austin to attempt to ride in one of its vehicles that has zero supervision.

Last week, Tesla officially removed Safety Monitors from some — not all — of its Robotaxi vehicles in Austin, Texas, answering skeptics who said the vehicles still needed supervision to operate safely and efficiently.

BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor

Tesla aimed to remove Safety Monitors before the end of 2025, and it did, but only to company employees. It made the move last week to open the rides to the public, just a couple of weeks late to its original goal, but the accomplishment was impressive, nonetheless.

However, the small number of Robotaxis that are operating without Safety Monitors has proven difficult to hail for a ride. David Moss, who has gained notoriety recently as the person who has traveled over 10,000 miles in his Tesla on Full Self-Driving v14 without any interventions, made it to Austin last week.

He has tried to get a ride in a Safety Monitor-less Robotaxi for the better part of four days, and after 38 attempts, he still has yet to grab one:

Tesla said last week that it was rolling out a controlled test of the Safety Monitor-less Robotaxis. Ashok Elluswamy, who heads the AI program at Tesla, confirmed that the company was “starting with a few unsupervised vehicles mixed in with the broader Robotaxi fleet with Safety Monitors,” and that “the ratio will increase over time.”

This is a good strategy that prioritizes safety and keeps the company’s controlled rollout at the forefront of the Robotaxi rollout.

However, it will be interesting to see how quickly the company can scale these completely monitor-less rides. It has proven to be extremely difficult to get one, but that is understandable considering only a handful of the cars in the entire Austin fleet are operating with no supervision within the vehicle.

Continue Reading

News

Tesla gives its biggest hint that Full Self-Driving in Europe is imminent

Published

on

Credit: BLKMDL3 | X

Tesla has given its biggest hint that Full Self-Driving in Europe is imminent, as a new feature seems to show that the company is preparing for frequent border crossings.

Tesla owner and influencer BLKMDL3, also known as Zack, recently took his Tesla to the border of California and Mexico at Tijuana, and at the international crossing, Full Self-Driving showed an interesting message: “Upcoming country border — FSD (Supervised) will become unavailable.”

Due to regulatory approvals, once a Tesla operating on Full Self-Driving enters a new country, it is required to comply with the laws and regulations that are applicable to that territory. Even if legal, it seems Tesla will shut off FSD temporarily, confirming it is in a location where operation is approved.

This is something that will be extremely important in Europe, as crossing borders there is like crossing states in the U.S.; it’s pretty frequent compared to life in America, Canada, and Mexico.

Tesla has been working to get FSD approved in Europe for several years, and it has been getting close to being able to offer it to owners on the continent. However, it is still working through a lot of the red tape that is necessary for European regulators to approve use of the system on their continent.

This feature seems to be one that would be extremely useful in Europe, considering the fact that crossing borders into other countries is much more frequent than here in the U.S., and would cater to an area where approvals would differ.

Tesla has been testing FSD in Spain, France, England, and other European countries, and plans to continue expanding this effort. European owners have been fighting for a very long time to utilize the functionality, but the red tape has been the biggest bottleneck in the process.

Tesla Europe builds momentum with expanding FSD demos and regional launches

Tesla operates Full Self-Driving in the United States, China, Canada, Mexico, Puerto Rico, Australia, New Zealand, and South Korea.

Continue Reading

Elon Musk

SpaceX Starship V3 gets launch date update from Elon Musk

The first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.

Published

on

Credit: SpaceX/X

Elon Musk has announced that SpaceX’s next Starship launch, Flight 12, is expected in about six weeks. This suggests that the first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.

In a post on X, Elon Musk stated that the next Starship launch is in six weeks. He accompanied his announcement with a photo that seemed to have been taken when Starship’s upper stage was just about to separate from the Super Heavy Booster. Musk did not state whether SpaceX will attempt to catch the Super Heavy Booster during the upcoming flight.

The upcoming flight will mark the debut of Starship V3. The upgraded design includes the new Raptor V3 engine, which is expected to have nearly twice the thrust of the original Raptor 1, at a fraction of the cost and with significantly reduced weight. The Starship V3 platform is also expected to be optimized for manufacturability. 

The Starship V3 Flight 12 launch timeline comes as SpaceX pursues an aggressive development cadence for the fully reusable launch system. Previous iterations of Starship have racked up a mixed but notable string of test flights, including multiple integrated flight tests in 2025.

Interestingly enough, SpaceX has teased an aggressive timeframe for Starship V3’s first flight. Way back in late November, SpaceX noted on X that it will be aiming to launch Starship V3’s maiden flight in the first quarter of 2026. This was despite setbacks like a structural anomaly on the first V3 booster during ground testing.

“Starship’s twelfth flight test remains targeted for the first quarter of 2026,” the company wrote in its post on X. 

Continue Reading