Connect with us

SpaceX

SpaceX builds new orbital Starship sections as Starhopper loses its engine

A tale of two Starships, April 8th. (NASASpaceflight - bocachicagal)

Published

on

Amidst the growing buzz centered around the imminent second launch of Falcon Heavy, SpaceX’s South Texas team has continued to work on Starhopper and the first orbital Starship prototype. wrapping up the first major tests of the former and making new progress on the latter’s aeroshell.

For unknown reasons, SpaceX technicians uninstalled Starhopper’s Raptor – the second full-scale engine ever built – shortly after the vehicle’s first true hop test and proceeded to package it up for shipment elsewhere, likely McGregor’s test facilities or the Hawthorne factory. Simultaneously, the third completed Raptor (SN03) was recently installed in McGregor according to photos and observations published by NASASpaceflight.com, preparing to continue to the engineering verification tests that began in February. Once those tests are complete and the engine design is modified to account for the lessons learned with Raptor SN01, SpaceX’s next step will be to begin ramping Raptor production in preparation for multi-engine Starhopper testing and – eventually – the completion of the first orbit-capable Starship prototype.

Needless to say, SpaceX is juggling a lot of interconnected projects in an effort to speed its Starship/Super Heavy (formerly BFR) development program, none of which are being discussed by the company in more than a cursory manner. What follows is thus meant to be an informed but speculative estimate of what is currently going on and what is next for BFR.

Starhopper slips the surly bonds

Over the course of the last two weeks, SpaceX has been almost continuously testing the first integrated Starship prototype, a partial-fidelity vehicle known as Starhopper. The testing primarily involved almost a dozen wet dress rehearsals (WDRs) in which the rocket was filled with some quantity of liquid oxygen and methane propellant and helium for pressurization as engineers and technicians worked through several bugs preventing Raptor from safely operating. According to CEO Elon Musk, some form of ice – potentially methane, oxygen, or even water – was forming in or around parts known as “prevalves”, likely referring to valves involved in the process of supply rocket engines with the right amount of fuel and oxidizer.

Less than 24 hours later, those valve issues were apparently solved as Starhopper’s Raptor ignited for the first time in a spectacular nighttime fireball. 48 hours after that first ignition, SpaceX once again fueled Starhopper and ignited its Raptor engine, lifting a spectacular handful of feet into the air before reaching the end of its very short tethers. According to Musk, the first Raptor ignition was completed with “all systems green”. After the second test, no additional comments were made. Less than three days later, SpaceX technicians uninstalled Starhopper’s Raptor (SN02) and shipped it somewhere offsite, indicating that it may have suffered a fault similar to the one that caused relatively minor damage to Raptor SN01 at the end of its February test campaign. Regardless, it appears that this development will keep Starhopper grounded for the indefinite future barring the imminent shipment of Raptor SN04 or the completion of SN01’s refurbishment.

The Raptor pack grows

Starhopper’s unplanned grounding ties in to the current whereabouts of SpaceX’s ever-growing collection of full-scale Raptor engines, now up to three articles with several additional engines in various stages of completion. According to photos – included in the article below – taken by a member of NASASpaceflight’s L2 forums, Raptor SN03 has been delivered to SpaceX’s McGregor, TX development facilities and installed on the same horizontal test stand that hosted Raptor SN01 and its subscale precursors. Roughly two months after SpaceX first installed and began static-firing Raptor SN01, the arrival of SN03 points to the imminent restart of the engine’s critical early-life test campaign.

Advertisement

While the exact strategy behind SpaceX’s Raptor and BFR propulsion development programs are unclear, a rough outline can be estimated from the company’s earlier Merlin engine development and general best-practices in the well-documented history of rocket propulsion. A huge amount of hot-fire testing is traditionally done with new rocket engines to work out inevitable bugs and optimize engineering as modeling, component-level tests, and subscale prototypes begin to – often imperfectly – mesh with physical reality. It’s quite possible that SpaceX is treating the >1200 seconds it static fired subscale Raptor as the bulk of that development process, with the engine as it is today representing something that the company is extremely confident in.

Regardless, the somewhat buggy behavior exhibited by the integrated Raptor and Starhopper indicate the obvious: both are fairly immature hardware still in some form of development, be it the late (Raptor) or the very earliest stages (Starhopper). By performing even more testing and continuing to optimize and gain familiarity with the hardware at hand, the fairly predictable process of development will arrive at more or less finished products.

The first finalized Raptor engine (SN01) completed a successful static fire debut on the evening of February 3rd. (SpaceX)
SpaceX technicians install Raptor SN02 on Starhopper, March 16th. (NASASpaceflight – bocachicagal)

Starship’s first orbital prototype

Last but not least, work continues on what will hopefully become the first orbit-capable Starship prototype, built in full-scale out of sheets of stainless steel that are far thinner than the metal used to construct Starhopper. This, too, is a normal process of development – as progress is made, prototypes will gradually lose an emergency cushion of performance margins, a bit like a sculptor starting with a solid block of marble and whittling it down to a work of art. Starhopper is that marble block, with inelegant, rough angles and far more material bulk than truly necessary.

As seen above, the orbital prototype – just the second in a presumably unfinished series – is already dramatically more refined. Instead of the first facade-like nose cone built for Starhopper, Starship’s nose section is being built out of smoothly tapered stainless steel panels that appear identical to those used to assemble the rocket’s growing aeroshell and tankage. As of now, there are five publicly visible Starship sections in various forms of fabrication, followed by a half-dozen or so tank dome segments waiting to be welded together as finished bulkheads.

Intriguingly, the only quasi-public official render of SpaceX’s steel Starship features visible sections very similar to those seen on the orbital prototype’s welded hull. They aren’t all visible in the render, but those that are are a distinct match to the aspect ratio of the welded sections visible in South Texas.


Extrapolating from this observation, Starship, as rendered, is comprised of approximately 16 large cylinder sections and 4-8 tapered nose sections. Based on the real orbital prototype, each large section is 9m in diameter and ~2.5m tall. Assuming Starship is 55 meters (180 ft) tall, this would translate into 22 2.5m sections, a nearly perfect fit with what is shown in the official render. Back in South Texas, SpaceX has 6 tapered sections and 7 cylinder sections in work, meaning that they would reach around 32.5m (~105 ft) – about 60% of a Starship hull – if stacked today.

If we assume that SpaceX follows Falcon procedures to build the seven-Raptor thrust structure separately (~2 sections) and excludes most of the cargo bay (~2-3 sections) on the first orbit-capable Starship, those ~13 in-work sections could be just a tapered nose cone away from the prototype’s full aeroshell. Time will tell…

Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Elon Musk

SpaceX to expand Central Texas facility with $8M Bastrop project

Bastrop is already the site of several Elon Musk-led ventures.

Published

on

Credit: SpaceX

SpaceX is set to expand its presence in Central Texas with an $8 million project to enlarge its Bastrop facility, as per state filings. 

The 80,000-square-foot addition, which is scheduled to begin construction on September 24 and wrap in early January 2026, was registered with the Texas Department of Licensing and Regulation and initially reported by My San Antonio

New investment

Bastrop is already the site of several Elon Musk-led ventures. The upcoming expansion will extend SpaceX’s office at 858 FM 1209, near Starlink’s operations and The Boring Company’s facilities. Just down the road, X is housed in the Hyperloop Plaza at 865 FM 1209.

SpaceX’s expansion reflects a steady buildup of resources in Bastrop since the private space firm established its presence in the area. The addition was praised by Tesla Governor Greg Abbott, who wrote on X that the expansion will “bring more jobs, innovations and will strengthen Starlink’s impact worldwide.” 

State support

In March, Gov. Greg Abbott announced a $17.3 million state grant to SpaceX for an “expansion of their semiconductor research and development (R&D) and advanced packaging facility in Bastrop.” The project is expected to create more than 400 new jobs and generate over $280 million in capital investment.

Advertisement

Following the grant award, the Texas Governor also noted that SpaceX’s facility would be growing by 1 million square feet across three years to boost its Starlink program. SpaceX’s Starlink division is among the company’s fastest-growing segments, with the satellite internet system connecting over 6 million users and counting worldwide. 

Recent reports have also indicated that Starlink has struck a deal with EchoStar to acquire 50 MHz of exclusive S-band spectrum in the United States and global Mobile Satellite Service (MSS) licenses. This should pave the way for Starlink to provide 5G coverage worldwide, even in remote areas. 

Continue Reading

Elon Musk

Starlink’s EchoStar spectrum deal could bring 5G coverage anywhere

The agreement strengthens Starlink’s ability to expand its mobile coverage worldwide.

Published

on

Credit: SpaceX/X

SpaceX has struck a deal with EchoStar to acquire 50 MHz of exclusive S-band spectrum in the United States and global Mobile Satellite Service (MSS) licenses, paving the way for its next-generation Starlink Direct to Cell constellation. 

The agreement strengthens Starlink’s ability to expand its mobile coverage worldwide. With the upgraded system, SpaceX aims to deliver full 5G connectivity to unmodified cell phones and eliminate mobile dead zones worldwide.

Expanding mobile coverage

Starlink’s Direct to Cell service was first launched in early 2024 with satellites designed to connect directly to standard LTE mobile devices. Within days of deployment, engineers demonstrated texting from unmodified phones, followed by video calling. Over the past 18 months, SpaceX has grown the system to more than 600 satellites, which now offer service across five continents. Today, Starlink Direct to Cell is considered the largest 4G coverage provider worldwide, connecting over 6 million users and counting, according to SpaceX in a post.

The constellation integrates with Starlink’s broader fleet of 8,000 satellites via a laser mesh network. Operating at 360 kilometers (224 miles) above Earth, the satellites connect directly to devices without hardware or firmware modifications. The system is already supporting messaging, video calls, navigation, social media apps, and IoT connectivity in remote areas.

Next-generation system

Through its new EchoStar spectrum acquisition, SpaceX plans to develop a second-generation constellation with far greater capacity. The upgraded satellites will leverage SpaceX-designed silicon and advanced phased array antennas to increase throughput by 20x per satellite and increase total system capacity by more than 100x. These enhancements are expected to support full 5G cellular connectivity in remote areas, with performance comparable to terrestrial LTE networks.

Advertisement

Partnerships with major mobile carriers remain central to Starlink’s expansion. Operators including T-Mobile in the United States, Rogers in Canada, KDDI in Japan, and Kyivstar in Ukraine are integrating Direct to Cell services for coverage in rural areas and during emergencies. The service has already provided critical communication during hurricanes, floods, and wildfires, enabling millions of SMS messages and emergency alerts to be delivered when ground networks were unavailable.

Continue Reading

Elon Musk

SpaceX Starship launches face pushback in Florida over noise, flights—and nudists

SpaceX is seeking permission to fly its fully reusable Starship system from Launch Complex 39A.

Published

on

Credit: SpaceX

The Federal Aviation Administration (FAA) has wrapped up a series of public hearings on SpaceX’s proposal to launch its Super Heavy Starship rocket from NASA’s Kennedy Space Center (KSC). 

The sessions, held both in-person and online, form part of the draft environmental impact statement (EIS) review that will determine whether SpaceX would be cleared to conduct Starship launches and landings from Florida’s Space Coast.

FAA review and Starship launch plans

According to the FAA’s draft EIS, SpaceX seeks permission to fly its fully reusable Starship system from Launch Complex 39A, where construction of a dedicated tower and infrastructure has already begun. Proposed operations could involve landings at KSC or droneships positioned across the Atlantic, Pacific, and Indian Oceans. The FAA emphasized that final approval is not guaranteed with the completion of the EIS, as safety and financial requirements must still be met, as noted in a Space.com report.

Starship’s larger scale compared to Falcon 9 means expanded exclusion zones for air, sea, and beach access. The analysis also projected more than 60 annual closures of Playalinda Beach, alongside potential flight delays across Florida airports lasting 40 minutes to two hours. Port Canaveral would also be affected by maritime restrictions.

Local concerns

Public comments reflected a mix of optimism and unease. Aviation officials, such as Tampa International Airport COO John Tiliacos, warned of significant disruption to commercial flights. “There is the potential that there’s going to be significant impact to commercial aviation and the traveling public. That’s something that certainly the FAA needs to give consideration to and, frankly, come up with a plan to mitigate,” he stated. 

Advertisement

Others raised health concerns, noting that chronic sleep disruption from launch noise could impact veterans and trauma survivors. Robyn Memphis, a neuroscience and psychology graduate student, stated that sleep disruptions from launch noise and sonic booms could carry lasting effects. “Chronic sleep disruption is not just inconvenient. This is directly linked to depression, anxiety… cardiovascular disease, even suicide risk. And being in Florida, we have many veterans and trauma survivors in the community,” she said.

Nudist protests and responses

Erich Schuttauf, the executive director of the American Association for Nude Recreation, also argued that places like Playalinda Beach, a nudist beach, are crucial for people who travel to places where public nudity is legal. His sentiments were echoed by fellow nudist Sue Stevens, who noted that “It’s probably a quarter million people that travel and think like I do, who look for destinations that are beautiful and surrounded by like-minded people.”

Photographer Max West, who plans to move to Florida to photograph Starship, noted that the spacecraft presents a notable step forward for humanity. And while its impact to communities is not marginal, the progress it offers is well worth it. “I’m not going to say that there is zero environmental impact there,” he said, though he also stated that there has to be some “little sacrifices along the way. “The turtles and the nudists will have to migrate. That’s the cost that you have to pay for this incredible stuff that’s happening.”

Continue Reading

Trending