Connect with us

News

SpaceX begins Starship launch mount installation at historic Pad 39A in Florida

An excellent view of the kind of finalized launch mount SpaceX has in mind for Starship and Super Heavy, both in Texas and Florida. (SpaceX)

Published

on

At the same time as SpaceX’s Boca Chica, Texas team is working around the clock to prepare Starship Mk1 for several major tests, the company is building a second dedicated Starship launch complex at Pad 39A and as of November 4th, that construction effort has reached a symbolic milestone.

According to photos taken by local resident and famed rocket and ship photographer Julia Bergeron on a bus tour of Kennedy Space Center (KSC), SpaceX has officially begun to install a large steel structure at Launch Complex 39A, a pad the company has leased from NASA since 2014. Known as a launch mount, the massive structure will one day support SpaceX’s first East Coast Starship and Super Heavy static fires and test flights.

Starship Mk1 is pictured here in Texas atop a new launch mount on November 2nd. SpaceX’s initial Starship launch facilities in Florida appear to be significantly different. (NASASpaceflight – bocachicagal)

At SpaceX’s Boca Chica, Texas Starship facilities, the company has already made a huge amount of progress fabricating and outfitting a brand new launch mount that will soon support Starship Mk1’s first propellant loading, static fire, and flight tests. The spartan steel structure looks different from anything SpaceX has built in the past for Falcon 9 and is equally unrecognizable alongside the renders of a finished-product launch pad included in an updated Starship launch video.

What is undeniable, nevertheless, is the speed with which technicians have taken the Texas launch mount from a group of unconnected, partially-finished parts to a nearly complete structure with the business half of Starship Mk1 installed on top. SpaceX workers have built the mount, completed a large amount of plumbing to connect it to nearby liquid oxygen, methane, nitrogen, and helium reserves, and installed Starship on the mount in less than two months. The final integration of different prefabricated pieces began barely a month before Starship was moved to the pad, as pictured below.

SpaceX’s new Starship launch mount is pictured here in Boca Chica on September 28th. (Teslarati – Eric Ralph)
Boca Chica’s Starship launch mount is pictured here on November 3rd, barely 5 weeks later. (NASASpaceflight – bocachicagal)

Two pads, two approaches

Although Boca Chica’s launch mount is quite large, based on Julia’s photos of Pad 39A, Florida’s nascent launch mount is going to be significantly bigger. The section that SpaceX began installing in the first days of November appears already be much taller than the mount in Texas, and it also looks more like a rectangular corner than anything resembling part of Boca Chica’s hexagonal structure.

At the same time, the apparent rectangular corner being worked on in Florida would be a much better fit for the partially-enclosed launch mount structure shown in SpaceX’s official 2019 Starship launch video.

Starship clears a more advanced launch structure atop Super Heavy in this official 2019 render. (SpaceX)

This is all to say that it looks like SpaceX is taking significantly different approaches with its two prospective Starship launch sites, which should come as no surprise in the context of the Starship program. SpaceX is already competitively building multiple Starship prototypes at two separate facilities in Boca Chica, Texas and Cocoa, Florida, a competition that has already produced visible differences between Mk1 and Mk2 prototypes. There’s a good chance that SpaceX intends to preserve that competitive atmosphere with Starship’s launch facilities, not just the rocket itself.

Additionally, it’s clear that Texas and Florida currently serve very different roles in the actual testing of Starship prototypes. Boca Chica has been active in that regard for more than half a year, ranging from the first Starhopper static fire in April to Starhopper’s 150-meter test flight in August. Florida has been almost entirely focused on iterating the build process itself and has already prefabricated nearly two dozen single-weld steel rings that will soon become Starship Mk4.

Advertisement
-->
https://twitter.com/John_Winkopp/status/1185937307674779648

A step further, SpaceX CEO Elon Musk has made it clear that he is pushing for Starship’s first orbital launch to occur in the first half of 2020, an incredibly ambitious target given that the first Super Heavy booster prototype has yet to begin fabrication or assembly of any kind. Regardless, with that ambitious target in mind, SpaceX still needs to try to build a launch facility capable of standing up to a vehicle more powerful than Saturn V unfathomably quickly.

Head in the clouds

More likely than not, SpaceX’s Pad 39A Starship facilities will (attempt to) be that launch facility. An August 2019 environmental impact statement revealed that SpaceX would avoid Pad 39A’s massive flame trench and instead build a separate water-cooled thrust diverter, a technology SpaceX is extremely familiar with.

The diverter will likely have to be larger than anything SpaceX has ever attempted to build and will take a significant amount of time and money to fabricate, but the approach could potentially allow SpaceX to build Super Heavy-rated launch facilities from scratch in just 6-12 months. Put simply, however, SpaceX is not going to want to build a Starship-sized thrust diverter and launch mount in Florida if it will almost immediately have to build a second, larger replacement big enough for orbital launch attempts with Super Heavy.

Starship launch facilities may eventually feature a large, permanent crane, meant to rapidly return boosters to the launch mount and stack Starships atop them. (SpaceX)

All things considered, it’s thus reasonably likely that SpaceX’s first draft of Florida Starship launch facilities will immediately jump to something sized for Super Heavy static fires and launches, even if that means it will take much longer to complete. If the pace of launch pad development in Boca Chica is anything to go by, it’s entirely possible that SpaceX will go from breaking ground at Pad 39A (mid-September 2019) to a more or less complete Starship-Super Heavy launch mount in roughly half a year.

Even if it takes more than a year to build, SpaceX could still be ready to attempt Starship’s first orbital launch well before the end of 2020.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla hints toward Premium Robotaxi offering with Model S testing

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

Published

on

Credit: Sawyer Merritt | X

Tesla Model S vehicles were spotted performing validation testing with LiDAR rigs in California today, a pretty big switch-up compared to what we are used to seeing on the roads.

Tesla utilizes the Model Y crossover for its Robotaxi fleet. It is adequately sized, the most popular vehicle in its lineup, and is suitable for a wide variety of applications. It provides enough luxury for a single rider, but enough room for several passengers, if needed.

However, the testing has seemingly expanded to one of Tesla’s premium flagship offerings, as the Model S was spotted with the validation equipment that is seen entirely with Model Y vehicles. We have written several articles on Robotaxi testing mules being spotted across the United States, but this is a first:

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

It seems to hint that Tesla could add a premium, more luxury offering to its Robotaxi platform eventually. Think about it: Uber has Uber Black, Lyft has Lyft Black. These vehicles and services are associated with a more premium cost as they combine luxury models with more catered transportation options.

Tesla could be testing the waters here, and it could be thinking of adding the Model S to its fleet of ride-hailing vehicles.

Reluctant to remove the Model S from its production plans completely despite its low volume contributions to the overall mission of transitioning the world to sustainable energy, the flagship sedan has always meant something. CEO Elon Musk referred to it, along with its sibling Model X, as continuing on production lines due to “sentimental reasons.”

However, its purpose might have been expanded to justify keeping it around, and why not? It is a cozy, premium offering, and it would be great for those who want a little more luxury and are willing to pay a few extra dollars.

Of course, none of this is even close to confirmed. However, it is reasonable to speculate that the Model S could be a potential addition to the Robotaxi fleet. It’s capable of all the same things the Model Y is, but with more luxuriousness, and it could be the perfect addition to the futuristic fleet.

Continue Reading

News

Rivian unveils self-driving chip and autonomy plans to compete with Tesla

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

Published

on

Credit: Rivian

Rivian unveiled its self-driving chip and autonomy plans to compete with Tesla and others at its AI and Autonomy Day on Thursday in Palo Alto, California.

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

CEO RJ Scaringe said it will learn and become more confident and robust as more miles are driven and it gathers more data. This is what Tesla uses through a neural network, as it uses deep learning to improve with every mile traveled.

He said:

“I couldn’t be more excited for the work our teams are driving in autonomy and AI. Our updated hardware platform, which includes our in-house 1600 sparse TOPS inference chip, will enable us to achieve dramatic progress in self-driving to ultimately deliver on our goal of delivering L4. This represents an inflection point for the ownership experience – ultimately being able to give customers their time back when in the car.”

At first, Rivian plans to offer the service to personally-owned vehicles, and not operate as a ride-hailing service. However, ride-sharing is in the plans for the future, he said:

“While our initial focus will be on personally owned vehicles, which today represent a vast majority of the miles to the United States, this also enables us to pursue opportunities in the rideshare space.”

The Hardware

Rivian is not using a vision-only approach as Tesla does, and instead will rely on 11 cameras, five radar sensors, and a single LiDAR that will face forward.

It is also developing a chip in-house, which will be manufactured by TSMC, a supplier of Tesla’s as well. The chip will be known as RAP1 and will be about 50 times as powerful as the chip that is currently in Rivian vehicles. It will also do more than 800 trillion calculations every second.

RAP1 powers the Autonomy Compute Module 3, known as ACM3, which is Rivian’s third-generation autonomy computer.

ACM3 specs include:

  • 1600 sparse INT8 TOPS (Trillion Operations Per Second).
  • The processing power of 5 billion pixels per second.
  • RAP1 features RivLink, a low-latency interconnect technology allowing chips to be connected to multiply processing power, making it inherently extensible.
  • RAP1 is enabled by an in-house developed AI compiler and platform software

As far as LiDAR, Rivian plans to use it in forthcoming R2 cars to enable SAE Level 4 automated driving, which would allow people to sit in the back and, according to the agency’s ratings, “will not require you to take over driving.”

More Details

Rivian said it will also roll out advancements to the second-generation R1 vehicles in the near term with the addition of UHF, or Universal Hands-Free, which will be available on over 3.5 million miles of roadway in the U.S. and Canada.

Rivian will now join the competitive ranks with Tesla, Waymo, Zoox, and others, who are all in the race for autonomy.

Continue Reading

News

Tesla partners with Lemonade for new insurance program

Tesla recently was offered “almost free” coverage for Full Self-Driving by Lemonade’s Shai Wininger, President and Co-founder, who said it would be “happy to explore insuring Tesla FSD miles for (almost) free.”

Published

on

Credit: Tesla

Tesla owners in California, Oregon, and Arizona can now use Lemonade Insurance, the firm that recently said it could cover Full Self-Driving miles for “almost free.”

Lemonade, which offered the new service through its app, has three distinct advantages, it says:

  • Direct Connection for no telematics device needed
  • Better customer service
  • Smarter pricing

The company is known for offering unique, fee-based insurance rates through AI, and instead of keeping unclaimed premiums, it offers coverage through a flat free upfront. The leftover funds are donated to charities by its policyholders.

On Thursday, it announced that cars in three states would be able to be connected directly to the car through its smartphone app, enabling easier access to insurance factors through telematics:

Tesla recently was offered “almost free” coverage for Full Self-Driving by Lemonade’s Shai Wininger, President and Co-founder, who said it would be “happy to explore insuring Tesla FSD miles for (almost) free.”

The strategy would be one of the most unique, as it would provide Tesla drivers with stable, accurate, and consistent insurance rates, while also incentivizing owners to utilize Full Self-Driving for their travel miles.

Tesla Full Self-Driving gets an offer to be insured for ‘almost free’

This would make FSD more cost-effective for owners and contribute to the company’s data collection efforts.

Data also backs Tesla Full Self-Driving’s advantages as a safety net for drivers. Recent figures indicate it was nine times less likely to be in an accident compared to the national average, registering an accident every 6.36 million miles. The NHTSA says a crash occurs approximately every 702,000 miles.

Tesla also offers its own in-house insurance program, which is currently offered in twelve states so far. The company is attempting to enter more areas of the U.S., with recent filings indicating the company wants to enter Florida and offer insurance to drivers in that state.

Continue Reading