News
SpaceX installs second Starship Mk1 canard ahead of transport to launch pad
SpaceX has begun to install Starship Mk1’s second of two forward ‘canards’, aerodynamic flaps the rocket prototype will soon use to attempt the first radical skydiver-style landing. SpaceX technicians are likely working to fully outfit the rocket before transporting its nose section to the launch pad, where it can be mated to Starship Mk1’s lower tank and engine section.
This second canard installation follows just a few days after SpaceX technicians began installing the first fin, a process that took a fair bit longer than usual as a result of new hardware integrated with the control surfaces this time around. Discussed earlier today, those large mechanism are likely the substantial actuators Starship will need to rapidly tweak its trajectory while falling through the atmosphere.
“Barely three weeks after the rocket’s forward flaps (canards) were removed, SpaceX technicians began the reinstallation process with one major visible difference: a massive motorcycle-sized actuator. The appearance of that previously unseen actuator mechanism on the first reinstalled canard suggests that this time around, SpaceX is installing Starship’s flaps with their final purpose of controlling Starship’s free-fall in mind.”
Teslarati, 11/04/2019
With the first installation complete, SpaceX’s Boca Chica technicians will likely be able to install Starship Mk1’s second canard more quickly. Beyond attaching the prototype’s control surfaces, SpaceX has also made a significant amount of progress outfitting Starship Mk1’s nose section with other hardware, notably fitting the nose’s exterior fuel lines with what is likely insulation.
That same black and silver insulation has been visible on SpaceX’s Starship Mk2 prototype in Cocoa, Florida, where technicians appear to have taken a slightly different step than Texas, insulating the plumbing before installing it on the vehicle.
Together again, at last
On October 30th, SpaceX lifted Starship Mk1’s tank and engine section onto a remote-controlled transported and moved the rocket half approximately a mile to its Boca Chica, Texas launch facilities, where Starship was installed on a freshly-constructed launch mount. SpaceX’s decision to move Mk1’s halves separately came as a bit of a surprise but appears to have been driven by a need to ensure that the spacecraft’s bottom half fit properly on the launch mount’s umbilical connections. Between the mount’s hefty steel beams, the beginnings of those panels (often deemed ‘quick disconnects’) are visible at the base of the panorama below.

Also visible around the base of Starship Mk1’s shiny aft section are a number of black steel structures – six, to be precise. Those protrusions are Starship’s landing legs, one of the last significant mechanisms installed on the rocket before SpaceX transported the half to the launch site. For unknown reasons, Starship Mk1’s legs – as well as Mk2’s – are almost nothing like those SpaceX have proposed for past Starship iterations and are even more dissimilar to Falcon 9’s extensively flight-proven hardware.

Instead of Falcon 9’s triangular, spread-eagle legs or BFR’s older tripod fin setup, Starship 2019 features six peg-like legs that only deploy or retract directly up or down. As some observers have noted, some of the hardware installed in and around those steel beam-like legs resembles industrial-grade linear brakes, suggesting that the legs will be deployed from their stowed positions by releasing those brakes and letting gravity do most of the work.
Layman concerns remain about the stability of six perfectly vertical legs with a span essentially the same as Starship’s own diameter, a possible indicator that the dead-simple landing legs on Mk1 and Mk2 may be dramatically simplified for the sake of speedy development. At the same time, it’s possible that their linear brake mechanisms could simultaneously offer some sort of minor suspension or terrain compensation, but their extremely narrow span fundamentally limits their potential stability. For landing on a prepared concrete slab, however, they will likely be sufficient, although almost any lateral velocity at all could result in Starship tipping over.
For now, SpaceX has road closures scheduled on November 7th, 8th, and 12th, the former two of which are probably more focused on transporting Starship Mk1’s nose section to the pad for installation atop the tank section. At the same time, SpaceX is clearly preparing for a series of major Starship tests, including a tank proof test, a wet dress rehearsal, and a triple-Raptor static fire. Stay tuned for updates!
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Investor's Corner
Tesla gets bold Robotaxi prediction from Wall Street firm
Last week, Andrew Percoco took over Tesla analysis for Morgan Stanley from Adam Jonas, who covered the stock for years. Percoco seems to be less optimistic and bullish on Tesla shares, while still being fair and balanced in his analysis.
Tesla (NASDAQ: TSLA) received a bold Robotaxi prediction from Morgan Stanley, which anticipates a dramatic increase in the size of the company’s autonomous ride-hailing suite in the coming years.
Last week, Andrew Percoco took over Tesla analysis for Morgan Stanley from Adam Jonas, who covered the stock for years. Percoco seems to be less optimistic and bullish on Tesla shares, while still being fair and balanced in his analysis.
Percoco dug into the Robotaxi fleet and its expansion in the coming years in his latest note, released on Tuesday. The firm expects Tesla to increase the Robotaxi fleet size to 1,000 vehicles in 2026. However, that’s small-scale compared to what they expect from Tesla in a decade.
Tesla expands Robotaxi app access once again, this time on a global scale
By 2035, Morgan Stanley believes there will be one million Robotaxis on the road across multiple cities, a major jump and a considerable fleet size. We assume this means the fleet of vehicles Tesla will operate internally, and not including passenger-owned vehicles that could be added through software updates.
He also listed three specific catalysts that investors should pay attention to, as these will represent the company being on track to achieve its Robotaxi dreams:
- Opening Robotaxi to the public without a Safety Monitor. Timing is unclear, but it appears that Tesla is getting closer by the day.
- Improvement in safety metrics without the Safety Monitor. Tesla’s ability to improve its safety metrics as it scales miles driven without the Safety Monitor is imperative as it looks to scale in new states and cities in 2026.
- Cybercab start of production, targeted for April 2026. Tesla’s Cybercab is a purpose-built vehicle (no steering wheel or pedals, only two seats) that is expected to be produced through its state-of-the-art unboxed manufacturing process, offering further cost reductions and thus accelerating adoption over time.
Robotaxi stands to be one of Tesla’s most significant revenue contributors, especially as the company plans to continue expanding its ride-hailing service across the world in the coming years.
Its current deployment strategy is controlled and conservative to avoid any drastic and potentially program-ruining incidents.
So far, the program, which is active in Austin and the California Bay Area, has been widely successful.
News
Tesla Model Y L is gaining momentum in China’s premium segment
This suggests that the addition of the Model Y L to Tesla China’s lineup will not result in a case of cannibalization, but a possible case of “premiumization” instead.
Tesla’s domestic sales in China held steady in November with around 73,000 units delivered, but a closer look at the Model Y L’s numbers hints at an emerging shift towards pricier variants that could very well be boosting average selling prices and margins.
This suggests that the addition of the Model Y L to Tesla China’s lineup will not result in a case of cannibalization, but a possible case of “premiumization” instead.
Tesla China’s November domestic numbers
Data from the a Passenger Car Association (CPCA) indicated that Tesla China saw domestic deliveries of about 73,000 vehicles in November 2025. This number included 34,000 standard Model Y units, 26,000 Model 3 units, and 13,000 Model Y L units, as per industry watchers.
This means that the Model Y L accounted for roughly 27% of Tesla China’s total Model Y sales, despite the variant carrying a ~28% premium over the base RWD Model Y that is estimated to have dominated last year’s mix.
As per industry watcher @TSLAFanMtl, this suggests that Tesla China’s sales have moved towards more premium variants this year. Thus, direct year-over-year sales comparisons might miss the bigger picture. This is true even for the regular Model Y, as another premium trim, the Long Range RWD variant, was also added to the lineup this 2025.
November 2025 momentum
While Tesla China’s overall sales this year have seen challenges, the Model Y and Model 3 have remained strong sellers in the country. This is especially impressive as the Model Y and Model 3 are premium-priced vehicles, and they compete in the world’s most competitive electric vehicle market. Tesla China is also yet to roll out the latest capabilities of FSD in China, which means that its vehicles in the country could not tap into their latest capabilities yet.
Aggregated results from November suggest that the Tesla Model Y took the crown as China’s #1 best-selling SUV during the month, with roughly 34,000 deliveries. With the Model Y L, this number is even higher. The Tesla Model 3 also had a stellar month, seeing 25,700 deliveries during November 2025.
Cybertruck
Tesla Cybertruck earns IIHS Top Safety Pick+ award
To commemorate the accolade, the official Cybertruck account celebrated the milestone on X.
The Tesla Cybertruck has achieved the Insurance Institute for Highway Safety’s (IIHS) highest honor, earning a Top Safety Pick+ rating for 2025 models built after April 2025.
The full-size electric pickup truck’s safety rating is partly due to the vehicle’s strong performance in updated crash tests, superior front crash prevention, and effective headlights, among other factors. To commemorate the accolade, the official Cybertruck account celebrated the milestone on X.
Cybertruck’s IIHS rating
As per the IIHS, beginning with 2025 Cybertruck models built after April 2025, changes were made to the front underbody structure and footwell to improve occupant safety in driver-side and passenger-side small overlap front crashes. The moderate overlap front test earned a good rating, and the updated side impact test also received stellar marks.
The Cybertruck’s front crash prevention earned a good rating in pedestrian scenarios, with the standard Collision Avoidance Assist avoiding collisions in day and night tests across child, adult crossing, and parallel paths. Headlights with high-beam assist compensated for limitations, contributing to the top award.
Safest and most autonomous pickup
The Cybertruck is one of only two full-size pickups to receive the IIHS’ Top Safety Pick + rating. It is also the only one equipped with advanced self-driving features via Tesla’s Full Self-Driving (Supervised) system. Thanks to FSD, the Cybertruck can navigate inner city streets and highways on its own with minimal supervision, adding a layer of safety beyond passive crash protection.
Community reactions poured in, with users praising the vehicle’s safety rating amidst skepticism from critics. Tesla itself highlighted this by starting its X post with a short clip of a Cybertruck critic who predicted that the vehicle will likely not pass safety tests. The only question now is, of course, if the vehicle’s Top Safety Pick+ rating from the IIHS will help the Cybertruck improve its sales.