News
SpaceX shifts South Texas focus to Starship’s orbital launch pad
Highlighted by a Wednesday jam-packed with important milestones, SpaceX appears to be shifting its focus in South Texas to the completion of Starship’s first orbital launch pad.
Boca Chica will be the first time in its history that SpaceX has faced the challenge of (or had the opportunity to) build an orbital launch complex from scratch after gaining a great deal of expertise modifying, reactivating, and rebuilding two existing pads in Florida and one in California. SpaceX’s Boca Chica facilities must also support what will be the most powerful rocket ever built (or tested) and a planned flight rate and turnaround capability that drastically exceeds anything the company (or anyone else, really) has attempted.
As a result, the site looks almost nothing like SpaceX’s other launch facilities. On top of the already significant hurdles faced, SpaceX is also attempting to complete its from-scratch facility in record time and work on Starship’s orbital launch site (OLS) really only began in earnest around the start of 2021. That aggressive work schedule has begun to clearly bear fruit in the last few months and arguably reached a bit of a local peak on Wednesday, July 28th.
A Tower Is Born
Kicking off the day after an aborted attempt on Tuesday, SpaceX began what would turn out to be an extremely busy Wednesday around 5am CDT (UTC-5) with the installation of the Starship launch tower’s ninth and final prefabricated section, effectively completing the structure’s skeleton. Unlike all other SpaceX pads, save for Pad 39A’s single-purpose Dragon and Crew Access Arm, Starship’s first orbital launch pad will lean heavily on a massive steel tower.
By all appearances, Starship’s launch tower will host an elevator-like carriage outfitted with several large arms on its exterior and will use those arms to stabilize, stack, fuel, and maybe even catch Starships and Super Heavy boosters. The tower will be integral to routine Starship launch operations, in other words.
With the installation of one last steel segment, that tower grew to a height of ~145m (~440 ft) and isn’t expected to get any taller after a 10m/30ft lightning rod is eventually added. SpaceX’s pad team can now begin the process of finalizing tower construction, ranging from adding cladding on its rectangular exterior and welding all nine steel sections together to filling its four legs with concrete.
Tank and Table
Just a few hours after the start of Tower Section #9 installation, a fleet of SpaceX’s self-propelled modular transporters (SPMTs) left the build site with two major pieces of orbital pad hardware in tow. For the first time in three months, one of those payloads was an OLS propellant storage tank built by SpaceX itself out of parts almost identical to those found on Starship. Since the first two ground support equipment (GSE) tanks were rapidly installed in April, activity on that front has been curiously stagnant.
Since modifications of those tanks began in-situ over the last month or so, the general consensus has been that a fairly minor design flaw or oversight was discovered well after production began, requiring a significant pause to rework and redesign the crucial pad components. In the meantime, work on contractor-built GSE tank shells meant to eventually insulate SpaceX’s thin cryogenic storage tanks continued unabated and one water tank and six shells have already been more or less completed. With any luck, GSE tank #5’s delivery to the OLS means that SpaceX has removed the roadblock(s) and is ready to move into plumbing and tank farm activation.
Simultaneously, a far more significant part known as the Starship ‘launch table’ also left SpaceX’s Boca Chica build site after nearly six months of around-the-clock assembly and outfitting. Designed to secure, fuel, and launch orbital Starships, the launch table has to be able to withstand the ~5000 metric ton (~11 million lb) weight of a fully-fueled Starship, hold Super Heavy in place during static fires and prelaunch ignitions that could produce ~7500 metric tons of thrust, and survive the unspeakable fury of 33 Raptor engines operating simultaneously.
Unlike all other major orbital Starship launch pad parts, the custom launch mount and table’s successful and near-total completion is an absolute necessity for any kind of orbital test flight or full-up Super Heavy static fire. Only part of the tank farm is truly necessary and the vast majority of the tower’s intended tasks can be completed with workarounds if neither are fully ready. Without the launch mount, however, testing much beyond what SpaceX has already accomplished is mostly impossible in the near term.

Raptor Invasion
Finally, while less pressing, SpaceX also accepted delivery of four Raptor engines on top of three more that were delivered to Boca Chica on Tuesday. According to CEO Elon Musk, Starship’s first orbital test flight(s) will happen with a full complement of engines installed, meaning that SpaceX will need to build, qualify, and ship at least 35 new Raptors for a single flight.
SpaceX recently completed assembly of the 100th full-scale Raptor engine at its Hawthorne factory and HQ – an encouraging sign that the engines needed for Starship’s orbital launch debut will be ready for flight sooner than later.
News
Tesla Full Self-Driving shows confident navigation in heavy snow
So far, from what we’ve seen, snow has not been a huge issue for the most recent Full Self-Driving release. It seems to be acting confidently and handling even snow-covered roads with relative ease.
Tesla Full Self-Driving is getting its first taste of Winter weather for late 2025, as snow is starting to fall all across the United States.
The suite has been vastly improved after Tesla released v14 to many owners with capable hardware, and driving performance, along with overall behavior, has really been something to admire. This is by far the best version of FSD Tesla has ever released, and although there are a handful of regressions with each subsequent release, they are usually cleared up within a week or two.
Tesla is releasing a modified version of FSD v14 for Hardware 3 owners: here’s when
However, adverse weather conditions are something that Tesla will have to confront, as heavy rain, snow, and other interesting situations are bound to occur. In order for the vehicles to be fully autonomous, they will have to go through these scenarios safely and accurately.
One big issue I’ve had, especially in heavy rain, is that the camera vision might be obstructed, which will display messages that certain features’ performance might be degraded.
So far, from what we’ve seen, snow has not been a huge issue for the most recent Full Self-Driving release. It seems to be acting confidently and handling even snow-covered roads with relative ease:
FSD 14.1.4 snow storm Ontario Canada pic.twitter.com/jwK1dLYT0w
— Everything AI (@mrteslaspace) November 17, 2025
I found the steepest, unplowed hill in my area and tested the following:
• FSD 14.2.1 on summer tires
• FSD 14.2.1 on winter tires
• Manual drivingBut I think the most impressive part was how FSD went DOWN the hill. FSD in the snow is sublime $TSLA pic.twitter.com/YMcN7Br3PU
— Dillon Loomis (@DillonLoomis) December 2, 2025
Well.. I couldn’t let the boys have all the fun!
Threw the GoPro up and decided to FSD v14.2.1 in the snow. Roads were not compacted like the other day, a little slippery, but overall doable at lower speeds. Enjoy the video and holiday music 🎶
Liked:
Took turns super slow… pic.twitter.com/rIAIeh3Zu3— 🦋Diana🦋 (@99_Colorado) December 3, 2025
Moving into the winter months, it will be very interesting to see how FSD handles even more concerning conditions, especially with black ice, freezing rain and snow mix, and other things that happen during colder conditions.
We are excited to test it ourselves, but I am waiting for heavy snowfall to make it to Pennsylvania so I can truly push it to the limit.
News
Tesla hosts Rome Mayor for first Italian FSD Supervised road demo
The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets.
Tesla definitely seems to be actively engaging European officials on FSD’s capabilities, with the company hosting Rome Mayor Roberto Gualtieri and Mobility Assessor Eugenio Patanè for a hands-on road demonstration.
The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets. This comes amid Tesla’s push for FSD’s EU regulatory approvals in the coming year.
Rome officials experience FSD Supervised
Tesla conducted the demo using a Model 3 equipped with Full Self-Driving (Supervised), tackling typical Roman traffic including complex intersections, roundabouts, pedestrian crossings and mixed users like cars, bikes and scooters.
The system showcased AI-based assisted driving, prioritizing safety while maintaining flow. FSD also handled overtakes and lane decisions, though with constant driver supervision.
Investor Andrea Stroppa detailed the event on X, noting the system’s potential to reduce severe collision risks by up to seven times compared to traditional driving, based on Tesla’s data from billions of global fleet miles. The session highlighted FSD’s role as an assistance tool in its Supervised form, not a replacement, with the driver fully responsible at all times.
Path to European rollout
Tesla has logged over 1 million kilometers of testing across 17 European countries, including Italy, to refine FSD for local conditions. The fact that Rome officials personally tested FSD Supervised bodes well for the program’s approval, as it suggests that key individuals are closely watching Tesla’s efforts and innovations.
Assessor Patanè also highlighted the administration’s interest in technologies that boost road safety and urban travel quality, viewing them as aids for both private and public transport while respecting rules.
Replies on X urged involving Italy’s Transport Ministry to speed approvals, with one user noting, “Great idea to involve the mayor! It would be necessary to involve components of the Ministry of Transport and the government as soon as possible: it’s they who can accelerate the approval of FSD in Italy.”
News
Tesla FSD (Supervised) blows away French journalist after test ride
Cadot described FSD as “mind-blowing,” both for the safety of the vehicle’s driving and the “humanity” of its driving behaviors.
Tesla’s Full Self-Driving (Supervised) seems to be making waves in Europe, with French tech journalist Julien Cadot recently sharing a positive first-hand experience from a supervised test drive in France.
Cadot, who tested the system for Numerama after eight years of anticipation since early Autopilot trials, described FSD as “mind-blowing,” both for the safety of the vehicle’s driving and the “humanity” of its driving behaviors.
Julien Cadot’s FSD test in France
Cadot announced his upcoming test on X, writing in French: “I’m going to test Tesla’s FSD for Numerama in France. 8 years I’ve been waiting to relive the sensations of our very first contact with the unbridled Autopilot of the 2016s.” He followed up shortly after with an initial reaction, writing: “I don’t want to spoil too much because as media we were allowed to film everything and I have a huge video coming… But: it’s mind-blowing! Both for safety and for the ‘humanity’ of the choices.”
His later posts detailed FSD’s specific maneuvers that he found particularly compelling. These include the vehicle safely overtaking a delivery truck by inches, something Cadot said he personally would avoid to protect his rims, but FSD handled flawlessly. He also praised FSD’s cyclist overtakes, as the system always maintained the required 1.5-meter distance by encroaching on the opposite lane when clear. Ultimately, Cadot noted FSD’s decision-making prioritized safety and advancement, which is pretty remarkable.
FSD’s ‘human’ edge over Autopilot
When asked if FSD felt light-years ahead of standard Autopilot, Cadot replied: “It’s incomparable, it’s not the same language.” He elaborated on scenarios like bypassing a parked delivery truck across a solid white line, where FSD assessed safety and proceeded just as a human driver might, rather than halting indefinitely. This “humanity” impressed Cadot the most, as it allowed FSD to fluidly navigate real-world chaos like urban Paris traffic.
Tesla is currently hard at work pushing for the rollout of FSD to several European countries. Recent reports have revealed that Tesla has received approval to operate 19 FSD test vehicles on Spain’s roads, though this number could increase as the program develops. As per the Dirección General de Tráfico (DGT), Tesla would be able to operate its FSD fleet on any national route across Spain. Recent job openings also hint at Tesla starting FSD tests in Austria. Apart from this, the company is also holding FSD demonstrations in Germany, France, and Italy.