News
SpaceX installs second Starship-derived fuel tank at orbital launch pad
For the second time in two weeks, SpaceX has rolled a ‘Starship-derived’ propellant tank to the next-generation rocket’s first orbital launch pad, continuing a recent burst of construction activity.
Precisely two weeks ago, SpaceX rolled the first of those massive ground support equipment (GSE) propellant tanks the 1.5 miles from its Boca Chica rocket factory to a nearby launch complex. Built with the same parts, facilities, and equipment as flightworthy Starship prototypes, SpaceX’s plans to build grounded storage tanks out of rocket parts went from a complete surprise to initial hardware delivery in less than two months.
Two weeks later, SpaceX has already completed the second of at least seven similar or identical tanks that should be able to store enough propellant for two back-to-back orbital Starship launches – and a third ‘GSE’ tank is just a week or so behind it.
As previously discussed on Teslarati, SpaceX’s decision to use a literal rocket factory to build custom propellant storage tanks is surprisingly revealing with a few reasonable assumptions in place.
SpaceX is effectively taking interchangeable Starship parts, slightly tweaking a handful of them, and turning what could have been a rocket into a propellant storage tank. This is significant because relative to all other rockets in history, even including SpaceX’s own Falcon 9 and Heavy, building storage tanks with unchanged rocket parts on a rocket assembly line would be roughly akin to hiring Vincent van Gogh to paint lane lines.
The existence of self-built propellant storage tanks virtually identical to flightworthy Starship airframes all but guarantees that SpaceX is already building Starships for a few million dollars each – and possibly much less.“
Teslarati.com – 6 April 2021
Aside from potentially being dirt-cheap bulk storage tanks that all but guarantee SpaceX can produce Starship and its Super Heavy boosters for pennies on the dollar of any other rocket in history, SpaceX is quickly demonstrating that it can build a lot of them – and quickly. Parts of Starship prototypes SN17 through SN20 and Super Heavy boosters BN2 and BN3 continue to slowly trickle out of SpaceX’s factory and Starship SN16 is steadily progressing towards completion to take over wherever SN15 leaves off.
However, at least a majority of SpaceX’s focus appears to be set on mass-producing propellant storage tanks as quickly as possible in order to prepare Starship’s orbital launch pad – deep into construction – for flight tests involving Super Heavy. Just last month, following a sourced report from NASASpaceflight.com, CEO Elon Musk confirmed that SpaceX intends to attempt Starship’s first launch on a Super Heavy booster as early as July 2021 – just three months from now.
For obvious reasons, the odds are firmly stacked against SpaceX attempting Starship’s first orbital launch mere months from now, though such an attempt would still be extremely impressive if it happens in 2021 at all. To even attempt that extraordinarily ambitious feat, SpaceX will have to complete at least a barebones ‘rough draft’ of its planned orbital launch complex, including at least four Starship-style GSE tanks.



Towards that end, GSE tank #3 (GSE-3) is already more than half complete and parts of GSE-4 are in work, likely meaning that SpaceX will have enough installed propellant storage capacity for orbital Starship launch attempts less than a month from now. It remains to be seen if SpaceX will power through tanks 5 through 7 after 3 and 4 are complete, or if the focus will shift back to Starship and Super Heavy prototype production.
Either way, SpaceX is wasting no time constructing a brand new super heavy-class launch pad and a tank farm the likes of which has never been seen before. For now, we’ll have to wait and see how long it takes Starship and Super Heavy to catch up.
News
Tesla is not sparing any expense in ensuring the Cybercab is safe
Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility.
The Tesla Cybercab could very well be the safest taxi on the road when it is released and deployed for public use. This was, at least, hinted at by the intensive safety tests that Tesla seems to be putting the autonomous two-seater through at its Giga Texas crash test facility.
Intensive crash tests
As per recent images from longtime Giga Texas watcher and drone operator Joe Tegtmeyer, Tesla seems to be very busy crash testing Cybercab units. Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility just before the holidays.
Tegtmeyer’s aerial photos showed the prototypes clustered outside the factory’s testing building. Some uncovered Cybercabs showed notable damage and one even had its airbags engaged. With Cybercab production expected to start in about 130 days, it appears that Tesla is very busy ensuring that its autonomous two-seater ends up becoming the safest taxi on public roads.
Prioritizing safety
With no human driver controls, the Cybercab demands exceptional active and passive safety systems to protect occupants in any scenario. Considering Tesla’s reputation, it is then understandable that the company seems to be sparing no expense in ensuring that the Cybercab is as safe as possible.
Tesla’s focus on safety was recently highlighted when the Cybertruck achieved a Top Safety Pick+ rating from the Insurance Institute for Highway Safety (IIHS). This was a notable victory for the Cybertruck as critics have long claimed that the vehicle will be one of, if not the, most unsafe truck on the road due to its appearance. The vehicle’s Top Safety Pick+ rating, if any, simply proved that Tesla never neglects to make its cars as safe as possible, and that definitely includes the Cybercab.
Elon Musk
Tesla’s Elon Musk gives timeframe for FSD’s release in UAE
Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year.
Tesla CEO Elon Musk stated on Monday that Full Self-Driving (Supervised) could launch in the United Arab Emirates (UAE) as soon as January 2026.
Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year.
Musk’s estimate
In a post on X, UAE-based political analyst Ahmed Sharif Al Amiri asked Musk when FSD would arrive in the country, quoting an earlier post where the CEO encouraged users to try out FSD for themselves. Musk responded directly to the analyst’s inquiry.
“Hopefully, next month,” Musk wrote. The exchange attracted a lot of attention, with numerous X users sharing their excitement at the idea of FSD being brought to a new country. FSD (Supervised), after all, would likely allow hands-off highway driving, urban navigation, and parking under driver oversight in traffic-heavy cities such as Dubai and Abu Dhabi.
Musk’s comments about FSD’s arrival in the UAE were posted following his visit to the Middle Eastern country. Over the weekend, images were shared online of Musk meeting with UAE Defense Minister, Deputy Prime Minister, and Dubai Crown Prince HH Sheikh Hamdan bin Mohammed. Musk also posted a supportive message about the country, posting “UAE rocks!” on X.
FSD recognition
FSD has been getting quite a lot of support from foreign media outlets. FSD (Supervised) earned high marks from Germany’s largest car magazine, Auto Bild, during a test in Berlin’s challenging urban environment. The demonstration highlighted the system’s ability to handle dense traffic, construction sites, pedestrian crossings, and narrow streets with smooth, confident decision-making.
Journalist Robin Hornig was particularly struck by FSD’s superior perception and tireless attention, stating: “Tesla FSD Supervised sees more than I do. It doesn’t get distracted and never gets tired. I like to think I’m a good driver, but I can’t match this system’s all-around vision. It’s at its best when both work together: my experience and the Tesla’s constant attention.” Only one intervention was needed when the system misread a route, showcasing its maturity while relying on vision-only sensors and over-the-air learning.
News
Tesla quietly flexes FSD’s reliability amid Waymo blackout in San Francisco
“Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post.
Tesla highlighted its Full Self-Driving (Supervised) system’s robustness this week by sharing dashcam footage of a vehicle in FSD navigating pitch-black San Francisco streets during the city’s widespread power outage.
While Waymo’s robotaxis stalled and caused traffic jams, Tesla’s vision-only approach kept operating seamlessly without remote intervention. Elon Musk amplified the clip, highlighting the contrast between the two systems.
Tesla FSD handles total darkness
The @Tesla_AI account posted a video from a Model Y operating on FSD during San Francisco’s blackout. As could be seen in the video, streetlights, traffic signals, and surrounding illumination were completely out, but the vehicle drove confidently and cautiously, just like a proficient human driver.
Musk reposted the clip, adding context to reports of Waymo vehicles struggling in the same conditions. “Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post.
Musk and the Tesla AI team’s posts highlight the idea that FSD operates a lot like any experienced human driver. Since the system does not rely on a variety of sensors and a complicated symphony of factors, vehicles could technically navigate challenging circumstances as they emerge. This definitely seemed to be the case in San Francisco.
Waymo’s blackout struggles
Waymo faced scrutiny after multiple self-driving Jaguar I-PACE taxis stopped functioning during the blackout, blocking lanes, causing traffic jams, and requiring manual retrieval. Videos shared during the power outage showed fleets of Waymo vehicles just stopping in the middle of the road, seemingly confused about what to do when the lights go out.
In a comment, Waymo stated that its vehicles treat nonfunctional signals as four-way stops, but “the sheer scale of the outage led to instances where vehicles remained stationary longer than usual to confirm the state of the affected intersections. This contributed to traffic friction during the height of the congestion.”
A company spokesperson also shared some thoughts about the incidents. “Yesterday’s power outage was a widespread event that caused gridlock across San Francisco, with non-functioning traffic signals and transit disruptions. While the failure of the utility infrastructure was significant, we are committed to ensuring our technology adjusts to traffic flow during such events,” the Waymo spokesperson stated, adding that it is “focused on rapidly integrating the lessons learned from this event, and are committed to earning and maintaining the trust of the communities we serve every day.”