Connect with us

News

SpaceX says Starship can beat ‘plasma blackout’ with Starlink antennas

Published

on

SpaceX has asked the FCC to allow Starship and its Super Heavy booster to communicate with Starlink during the rocket’s first orbital launch attempt, potentially unlocking game-changing capabilities.

Filed on June 28th, SpaceX’s Special Temporary Authority (STA) application contains a number of surprising details about the company’s plans to expand the experimental use of its Starlink satellite constellation to communicate with rockets in flight. That effort was first made public in April 2021 when a separate FCC application revealed plans to test Starlink on a Starship prototype. Starship serial number 15 (now known as Ship 15 or S15).

That particular prototype became the first of its kind to successfully launch and land in one piece on May 5th. Nothing is known about whether Starlink was actually used or how the Starship’s lone dish performed during the 10 kilometer (6.2 mi) flight test, but SpaceX’s plans to again combine both two Star– programs do offer some new lines to read between.

Relative to its first Starlink-Starship STA application, SpaceX splits no hairs in the ‘narrative’ attached to its latest request. Specifically, SpaceX repeatedly discusses the potential for Starlink to drastically improve the state of the art of routine spacecraft and launch vehicle telemetry and communications.

“SpaceX intends demonstrate high data rate communications with Starship and the Super Heavy Booster on the ground at the launch site in Starbase, TX during launch, during booster recovery, in flight, and during reentry. Starlink can provide unprecedented volumes of telemetry and enable communications during atmospheric reentry when ionized plasma around the spacecraft inhibits conventional telemetry frequencies. These tests will demonstrate Starlink’s ability to improve the efficiency and safety of future orbital spaceflight missions.

SpaceX — June 28th, 2021

Advertisement
-->

In short, in the two months since SpaceX first requested permission “to operate a single user terminal…during flight tests,” the company appears to have become extremely bullish about Starlink’s potential as a solution for rocket communications. The logical conclusion is that Starlink performed well during its trials aboard Starship S15 on the ground and in flight – possibly even exceeding SpaceX’s own expectations. Simultaneously, SpaceX is in the midst of expanding efforts to certify Starlink for aviation communications and has been generally ramping up tests on aircraft, ships, and road vehicles.

Indeed, at least in theory, the same attributes that allow Starlink to blow traditional consumer satellite communications solutions out of the water could make Starlink a boon for launch vehicle communications. That’s especially true for the test flights of experimental launch vehicles like Starship, where failure is an inevitable part of the development process. However, those launch failures are only beneficial insofar as they expand the knowledge base and allow lessons to be learned.

Falcon 9’s main telemetry antenna is visible on the booster’s interstage. (Richard Angle/BocaChicaGal)

Data, in other words, is essential, and the more data recovered from test flights, the better. Even on modern rockets, state-of-the-art telemetry usually involves maximum bandwidth on the order of a few hundred to a few thousand kilobits per second, often requiring software and compression gymnastics and uncomfortable triage to ensure that all necessary telemetry keeps flowing.

If Starlink could expand that bandwidth from a few megabits per second (Mbps) to dozens or even hundreds of Mbps, SpaceX could extract unprecedentedly widespread and high-resolution telemetry from Starship and Super Heavy during their first orbital test flight, leaving a wealth of data for likely post-flight failure analyses.

A Starship enters the Martian atmosphere in this artist’s impression. (SpaceX)

Perhaps most surprising is SpaceX’s claim that Starlink antennas could allow Starship to maintain a strong communications link throughout orbital reentry. Traditionally, all spacecraft capable of reentry produce a superheated sheath of plasma as they careen into Earth’s upper atmosphere. That plasma effectively blocks most radio waves, creating an inevitable several-minute communications ‘blackout’ for any reentering spacecraft.

If Starlink can somehow allow SpaceX to break through that ‘plasma barrier,’ it would give the company an unprecedented capability invaluable for the process of perfecting orbital Starship reentry, descent, and landing – a process Musk expects to involve several unsuccessful attempts. According to SpaceX’s FCC application, Starship’s first orbital launch and reentry attempt could occur as early as August 2021.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX Starship Version 3 booster crumples in early testing

Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.

Published

on

Credit: SpaceX/X

SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory. 

Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired. 

Booster test failure

SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.

Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.

Tight deadlines

SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.

Advertisement
-->

While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.

Continue Reading

News

Tesla FSD (Supervised) is about to go on “widespread” release

In a comment last October, Elon Musk stated that FSD V14.2 is “for widespread use.”

Published

on

Tesla has begun rolling out Full Self-Driving (Supervised) V14.2, and with this, the wide release of the system could very well begin. 

The update introduces a new high-resolution vision encoder, expanded emergency-vehicle handling, smarter routing, new parking options, and more refined driving behavior, among other improvements.

FSD V14.2 improvements

FSD (Supervised) V14.2’s release notes highlight a fully upgraded neural-network vision encoder capable of reading higher-resolution features, giving the system improved awareness of emergency vehicles, road obstacles, and even human gestures. Tesla also expanded its emergency-vehicle protocols, adding controlled pull-overs and yielding behavior for police cars, fire trucks, and ambulances, among others.

A deeper integration of navigation and routing into the vision network now allows the system to respond to blocked roads or detours in real time. The update also enhances decision-making in several complex scenarios, including unprotected turns, lane changes, vehicle cut-ins, and interactions with school buses. All in all, these improvements should help FSD (Supervised) V14.2 perform in a very smooth and comfortable manner.

Elon Musk’s predicted wide release

The significance of V14.2 grows when paired with Elon Musk’s comments from October. While responding to FSD tester AI DRIVR, who praised V14.1.2 for fixing “95% of indecisive lane changes and braking” and who noted that it was time for FSD to go on wide release, Musk stated that “14.2 for widespread use.”

FSD V14 has so far received a substantial amount of positive reviews from Tesla owners, many of whom have stated that the system now drives better than some human drivers as it is confident, cautious, and considerate at the same time. With V14.2 now rolling out, it remains to be seen if the update also makes it to the company’s wide FSD fleet, which is still populated by a large number of HW3 vehicles. 

Advertisement
-->
Continue Reading

News

Tesla FSD V14.2 starts rolling out to initial batch of vehicles

It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.

Published

on

Credit: Grok Imagine

Tesla has begun pushing Full Self-Driving (Supervised) v14.2 to its initial batch of vehicles. The update was initially observed by Tesla owners and veteran FSD users on social media platform X on Friday.

So far, reports of the update have been shared by Model Y owners in California whose vehicles are equipped with the company’s AI4 hardware, though it would not be surprising if more Tesla owners across the country receive the update as well. 

Based on the release notes of the update, key improvements in FSD V14.2 include a revamped neural network for better detection of emergency vehicles, obstacles, and human gestures, as well as options to select arrival spots. 

It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.

Following are the release notes of FSD (Supervised) V14.2, as shared on X by longtime FSD tester Whole Mars Catalog.

Advertisement
-->

Release Notes

2025.38.9.5

Currently Installed

FSD (Supervised) v14.2

Full Self-Driving (Supervised) v14.2 includes:

  • Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances.
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios including: unprotected turns, lane changes, vehicle cut-ins, and school busses.
  • Improved FSD’s ability to manage system faults and improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
  • Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
  • Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!

Upcoming Improvements:

  • Overall smoothness and sentience
  • Parking spot selection and parking quality
Continue Reading