Connect with us

News

SpaceX Starship aborts Raptor engine test, briefly catches fire

Starship SN8 is pictured here shortly before liftoff in December 2020. Largely identical, Starship SN11 is working towards its own flight test as early as this week. (SpaceX)

Published

on

Update: On March 15th, SpaceX got within milliseconds of Starship serial number 11’s (SN11) first Raptor engine test but suffered an abort just before full ignition, briefly leaving the rocket on fire.

Around 12:26 pm CDT, after an otherwise nominal static fire flow, Starship SN11 momentarily ignited one or two of its three Raptor engines’ preburners, referring to a central component that burns cryogenic liquid propellant into gas that’s ready for combustion. As with all preburner tests, intentional or otherwise, the end result looked a bit like a weak static fire and produced a small but visible amount of flame and thrust. Unlike intentional preburner tests, the static fire abort seemingly ignited something hidden inside Starship SN11’s and appeared to burn for at least another 30-40 seconds.

Starship SN8 intentionally performed a preburner test representative of SN11’s abort back in October 2020.

Raptor has proven itself to be an extremely durable engine, up to and including surviving visible onboard fires during actual Starship flight tests. Nevertheless, depending on the source of SN11’s post-abort fire and what it may or may not have burned or damaged, it’s no surprise that SpaceX ended testing for the day instead of quickly trying again, which it’s done several times prior. If the fire was largely harmless, SpaceX has already distributed notices suggesting a second attempt could happen as early as 6am to 12pm CDT (UTC-5) on Tuesday, March 16th. If more time is needed, SpaceX has the rest of the week to conduct any necessary repairs or swap out SN11’s Raptor engines.

Public documents show that SpaceX has plans to static fire and launch its latest Starship prototype within a two-day period that could begin later today.

SpaceX shipped Starship SN11 from its Boca Chica, Texas rocket factory to test and launch facilities a mile down the road on March 8th, less than five days after Starship SN10 exploded minutes after touchdown. The very next day, SpaceX completed ambient-temperature proof testing, filling Starship with benign nitrogen gas to check for leaks and verify system health. Two days after that, Starship SN11 appeared to complete a several-hour cryogenic proof test – swapping nitrogen gas for its supercool liquid form – without issue.

Advertisement
-->

Despite the seemingly successful ‘cryo proof,’ something prevented a subsequent static fire test planned on March 12th before any attempt could be made, delaying the next attempt until after the approaching weekend. An agreement between SpaceX, Cameron County, and the state of Texas currently prevents road closures (and thus rocket testing) on weekends falling between Labor Day and Memorial Day, rules meant to preserve some level of public access to Boca Chica Beach.

As a result, unless SpaceX is already ready to launch (it has waivers for three such weekend closures for launch attempts), the company has to wait until Monday even if a minor issue fixable in hours or a day or so scrubs Friday test plans. While inconvenient, it’s worth noting that the existence of that public beach and the strong regulations that protect its public domain is likely one of the only reasons the general public can still get as close as they can to SpaceX’s Boca Chica ‘Starbase’.

For whatever reason, that road closure agreement does still mean that SpaceX will (in theory) be able to test and launch any day of the week from May 31st to September 6th, save for a few holidays, effectively boosting the number of opportunities by 40% for those 14 weeks. Until then, SpaceX is doing everything it can to take full advantage of the five days a week it is allowed to test Starship prototypes. N

Notably, although Starships SN8 and SN9 both hit a few weeks of technical and regulatory snags while preparing for their high-altitude launch attempts, SpaceX has been gradually speeding up that process over time. Starship SN10, the first prototype of its kind to land in one piece, took just 33 days to go from pad arrival to liftoff and spent just 8 days between its first static fire and launch attempts. The same feats took Starship SN8 77 and 50 days, respectively, with SN9 splitting the difference at 43 days from transport to liftoff and 28 days between its first static fire and launch attempts.

Road closure requests, a safety warning for residents, and a Temporary Flight Restriction (TFR) filed with the FAA all suggest that SpaceX’s current plan is to attempt Starship SN11’s first triple-Raptor static fire between 6am and 12pm CDT on Monday, March 15th. If that test goes almost perfectly, SpaceX wants to turn the rocket around for a 10 km (6.2 mi) launch attempt on Tuesday, March 16th – the very next day. Given the past performance of high-altitude Starship prototypes, that target is decidedly ambitious and likely to incur delays, but it still reveals the true scope of SpaceX’s goals even at this early stage of development.

If Starship SN11 does manage to launch within a few days of its first static fire attempt, SpaceX would still crush SN10’s 33-day record by a factor of three. Stay tuned for updates on Monday’s possible Starship static fire and rapid Tuesday turnaround attempt

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla accused of infringing robotics patents in new lawsuit

Published

on

tesla store in New York City
Credit: Tesla

Tesla is being accused of infringing robotics patents by a company called Perrone Robotics, which is based out of Charlottesville, Virginia.

The suit was filed in Alexandria, Virginia, and accuses Tesla of knowingly infringing upon five patents related to robotics systems for self-driving vehicles.

The company said its founder, Paul Perrone, developed general-purpose robotics operating systems for individual robots and automated devices.

Perrone Robotics claims that all Tesla vehicles utilizing the company’s Autopilot suite within the last six years infringe the five patents, according to a report from Reuters.

Tesla’s new Safety Report shows Autopilot is nine times safer than humans

One patent was something the company attempted to sell to Tesla back in 2017. The five patents cover a “General Purpose Operating System for Robotics,” otherwise known as GPROS.

The GPROS suite includes extensions for autonomous vehicle controls, path planning, and sensor fusion. One key patent, U.S. 10,331,136, was explicitly offered to Tesla by Perrone back in 2017, but the company rejected it.

The suit aims to halt any further infringements and seeks unspecified damages.

This is far from the first suit Tesla has been involved in, including one from his year with Perceptive Automata LLC, which accused Tesla of infringing on AI models to interpret pedestrian/cyclist intent via cameras without licensing. Tesla appeared in court in August, but its motion to dismiss was partially denied earlier this month.

Tesla also settled a suit with Arsus LLC, which accused Autopilot’s electronic stability features of infringing on rollover prevention tech. Tesla won via an inter partes review in September.

Most of these cases involve non-practicing entities or startups asserting broad autonomous vehicle patents against Tesla’s rapid iteration.

Tesla typically counters with those inter partes reviews, claiming invalidity. Tesla has successfully defended about 70 percent of the autonomous vehicle lawsuits it has been involved in since 2020, but settlements are common to avoid discovery costs.

The case is Perrone Robotics Inc v Tesla Inc, U.S. District Court, Eastern District of Virginia, No. 25-02156. Tesla has not yet listed an attorney for the case, according to the report.

Continue Reading

News

Tesla has passed a critical self-driving milestone Elon Musk listed in Master Plan Part Deux

Tesla China announced that the company’s Autopilot system has accumulated 10 billion kilometers of driving experience.

Published

on

Tesla has passed a key milestone, and it was one that CEO Elon Musk initially mentioned more than nine years ago when he published Master Plan, Part Deux. 

As per Tesla China in a post on its official Weibo account, the company’s Autopilot system has accumulated over 10 billion kilometers of real-world driving experience.

Tesla China’s subtle, but huge announcement

In its Weibo post, Tesla China announced that the company’s Autopilot system has accumulated 10 billion kilometers of driving experience. “In this respect, Tesla vehicles equipped with Autopilot technology can be considered to have the world’s most experienced and seasoned driver.” 

Tesla AI’s handle on Weibo also highlighted a key advantage of the company’s self-driving system. “It will never drive under the influence of alcohol, be distracted, or be fatigued,” the team wrote. “We believe that advancements in Autopilot technology will save more lives.”

Tesla China did not clarify exactly what it meant by “Autopilot” in its Weibo post, though the company’s intense focus on FSD over the past years suggests that the term includes miles that were driven by FSD (Beta) and Full Self-Driving (Supervised). Either way, 10 billion cumulative miles of real-world data is something that few, if any, competitors could compete with.

Advertisement
-->

Elon Musk’s 10-billion-km estimate, way back in 2016

When Elon Musk published Master Plan Part Deux, he outlined his vision for the company’s autonomous driving system. At the time, Autopilot was still very new, though Musk was already envisioning how the system could get regulatory approval worldwide. He estimated that worldwide regulatory approval will probably require around 10 billion miles of real-world driving data, which was an impossible-sounding amount at the time. 

“Even once the software is highly refined and far better than the average human driver, there will still be a significant time gap, varying widely by jurisdiction, before true self-driving is approved by regulators. We expect that worldwide regulatory approval will require something on the order of 6 billion miles (10 billion km). Current fleet learning is happening at just over 3 million miles (5 million km) per day,” Musk wrote. 

It’s quite interesting but Tesla is indeed getting regulatory approval for FSD (Supervised) at a steady pace today, at a time when 10 billion miles of data has been achieved. The system has been active in the United States and has since been rolled out to other countries such as Australia, New Zealand, China, and, more recently, South Korea. Expectations are high that Tesla could secure FSD approval in Europe sometime next year as well. 

https://www.youtube.com/shorts/8n3hR6IG-HU?feature=share
Continue Reading

Elon Musk

SpaceX maintains unbelievable Starship target despite Booster 18 incident

It appears that it will take more than an anomaly to stop SpaceX’s march towards Starship V3’s refinement.

Published

on

Credit: SpaceX/X

SpaceX recently shared an incredibly ambitious and bold update about Starship V3’s 12th test flight. 

Despite the anomaly that damaged Booster 18, SpaceX maintained that it was still following its plans for the upgraded spacecraft and booster for the coming months. Needless to say, it appears that it will take more than an anomaly to stop SpaceX’s march towards Starship V3’s refinement. 

Starship V3 is still on a rapid development path

SpaceX’s update was posted through the private space company’s official account on social media platform X. As per the company, “the Starbase team plans to have the next Super Heavy booster stacked in December, which puts it on pace with the test schedule planned for the first Starship V3 vehicle and associated ground systems.” 

SpaceX then announced that Starship V3’s maiden flight is still expected to happen early next year. “Starship’s twelfth flight test remains targeted for the first quarter of 2026,” the company wrote in its post on X. 

Elon Musk mentioned a similar timeline on X earlier this year. In the lead up to Starshp Flight 11, which proved flawless, Musk stated that “Starship V3 is a massive upgrade from the current V2 and should be through production and testing by end of year, with heavy flight activity next year.” Musk has also mentioned that Starship V3 should be good enough to use for initial Mars missions.

Advertisement
-->

Booster 18 failure not slowing Starship V3’s schedule

SpaceX’s bold update came after Booster 18 experienced a major anomaly during gas system pressure testing at SpaceX’s Massey facility in Starbase, Texas. SpaceX confirmed in a post on X that no propellant was loaded, no engines were installed, and personnel were positioned at a safe distance when the booster’s lower section crumpled, resulting in no injuries.

Still, livestream footage showed significant damage around the liquid oxygen tank area of Booster 18, leading observers to speculate that the booster was a total loss. Booster 18 was among the earliest vehicles in the Starship V3 series, making the failure notable. Despite the setback, Starship V3’s development plans appear unchanged, with SpaceX pushing ahead of its Q1 2026 test flight target.

Continue Reading