Connect with us

News

High winds scrub SpaceX Starship SN9’s Monday launch attempt

Published

on

Update (2:30 pm CST): SpaceX appears to have called off Monday’s Starship SN9 launch attempt due (primarily) to high winds along the flight corridor. Additional opportunities are available from 8 am to 6 pm CST (UTC-6) on Tuesday (Jan 26) and Wednesday (Jan 27).

Technically, lacking any official confirmation, there’s still a chance of a launch attempt or additional ground testing happening today but either possibility is extremely unlikely at this point.

Update: SpaceX has completed what is known as a Flight Readiness Review (FRR) and determined that Starship prototype SN9 is ready to attempt its first high-altitude launch as early as today.

All necessary aviation and maritime notices and restrictions are in place and the company has begun the process of closing a public highway and clearing the launch site of employees. Today’s (Jan 25) launch window lasts from noon to 6 pm CST (UTC-6) and Starship SN9 could likely be made ready to launch anytime after 2pm be ready to fly as early as 4 pm CST according to a loudspeaker announcement at the launch pad. Stay tuned for updates and, hopefully, an official SpaceX webcast.

All signs point to SpaceX’s second high-altitude Starship prototype preparing for a 12.5-kilometer (~40,000 ft) as early as Monday, January 25th in a bid to rectify a last-second bug that caused its predecessor to explode last month.

Advertisement
-->

Known as Starship serial number 8 (SN8), the SpaceX-built prototype was the first to have its basic airframe (tank and nose sections) fully integrated, as well as the first Starship to attempt to break the 150m (~500 ft) ceiling set by Starhopper, SN5, and SN6. Break the ceiling SN8 most certainly did, performing a spectacularly successful 12.5 km launch that aced almost every single goal SpaceX had hoped to complete. Keyword almost.

After an impressive 280 seconds of uninterrupted operation of its Raptors, Starship SN8 shut down the last of those three engines, flipped onto its belly, and successful freefell ~12 kilometers back to Earth. The rocket then carried that success even further, reigniting two Raptors, performing a dramatic 120-degree flip, orienting itself vertically, and beginning to slow down for a soft landing.

Only then did Starship SN8’s performance deviate from virtual perfection. At T+6:38, a few seconds after beginning its crucial landing burn, one of Starship’s active Raptors shut down and the other effectively stopped generating thrust. The reason, CEO Elon Musk would later explain, was low head pressure in a smaller tank (‘header tank’) dedicated to supplying fuel during Starship’s wild flip and landing maneuver. It was never confirmed if the Raptor engine shutdown observed milliseconds prior to the other engine losing thrust was intentional.

Cause aside, the end result was unsurprising: without enough thrust to slow down, Starship SN8 accurately impacted the concrete landing zone but did so at high speed – likely around 50-60 m/s (100-150 mph). Given that Starhopper and Starships SN5 and SN6 had already successfully proven Starship’s ability to gently land from 150 meters on a single Raptor engine and that, prior to SN8, Starship’s bizarre belly-flop descent and 90-degree flip had been almost entirely theoretical, SpaceX deemed the launch a spectacular success.

Nothing better exemplifies that than the fact that a little over a month later, SpaceX quite literally began scrapping the most complex, completed section of a future Starship prototype (SN12) before it ever reached the assembly phase. Instead, SpaceX appears to be more focused than ever on a mysterious series of “major” upgrades Musk has said will debut on Starship SN15. Nearly all SN15 subsections have been completed and are simply waiting to be joined together, while parts of SN16 and SN17 are also starting to pile up in staging areas.

Advertisement
-->

Starship SN10 is practically ready to move to the launch pad to prepare for flight as soon as SpaceX chooses to do so and Starship SN11 is likely no more than a week or two of work away from reaching same level of readiness.

Ultimately, despite a long and delay-ridden test campaign, Starship SN9 finally completed what looked like a full-duration static fire of all three of its Raptor engines – the rocket’s sixth static fire overall. On Saturday, January 23rd, SpaceXers installed SN9’s flight termination system (FTS) – a system of explosives designed to destroy Starship if it flies too far off course. For Starship, FTS installation all but guarantees that a launch attempt is a matter of days away. Fresh county roadblocks, Temporary Flight Restrictions (TFRs) granted by the FAA, and Coast Guard a safety notice further imply that SN9 will attempt to launch as early as Monday morning, January 25th, with backup opportunities on Tuesday and Wednesday.

With any luck, like SN8’s high-altitude debut, SpaceX hopefully livestream Starship SN9’s own attempt at the same feat. Stay tuned for more details as they come.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla refines Full Self-Driving, latest update impresses where it last came up short

We were able to go out and test it pretty extensively on Saturday, and the changes Tesla made from the previous version were incredibly impressive, especially considering it seemed to excel where it last came up short.

Published

on

Credit: TESLARATI

Tesla released Full Self-Driving v14.2.1.25 on Friday night to Early Access Program (EAP) members. It came as a surprise, as it was paired with the release of the Holiday Update.

We were able to go out and test it pretty extensively on Saturday, and the changes Tesla made from the previous version were incredibly impressive, especially considering it seemed to excel where it last came up short.

Tesla supplements Holiday Update by sneaking in new Full Self-Driving version

With Tesla Full Self-Driving v14.2.1, there were some serious regressions. Speed Profiles were overtinkered with, causing some modes to behave in a strange manner. Hurry Mode was the most evident, as it refused to go more than 10 MPH over the speed limit on freeways.

It would routinely hold up traffic at this speed, and flipping it into Mad Max mode was sort of over the top. Hurry is what I use most frequently, and it had become somewhat unusable with v14.2.1.

It seemed as if Speed Profiles should be more associated with both passing and lane-changing frequency. Capping speeds does not help as it can impede the flow of traffic. When FSD travels at the speed of other traffic, it is much more effective and less disruptive.

With v14.2.1.25, there were three noticeable changes that improved its performance significantly: Speed Profile refinements, lane change confidence, and Speed Limit recognition.

Speed Profile Refinement

Speed Profiles have been significantly improved. Hurry Mode is no longer capped at 10 MPH over the speed limit and now travels with the flow of traffic. This is much more comfortable during highway operation, and I was not required to intervene at any point.

With v14.2.1, I was sometimes assisting it with lane changes, and felt it was in the wrong place at the wrong time more frequently than ever before.

However, this was one of the best-performing FSD versions in recent memory, and I really did not have any complaints on the highway. Speed, maneuvering, lane switching, routing, and aggressiveness were all perfect.

Lane Changes

v14.2.1 had a tendency to be a little more timid when changing lanes, which was sort of frustrating at times. When the car decides to change lanes and turn on its signal, it needs to pull the trigger and change lanes.

It also changed lanes at extremely unnecessary times, which was a real frustration.

There were no issues today on v14.2.1.25; lane changes were super confident, executed at the correct time, and in the correct fashion. It made good decisions on when to get into the right lane when proceeding toward its exit.

It was one of the first times in a while that I did not feel as if I needed to nudge it to change lanes. I was very impressed.

Speed Limit Recognition

So, this is a complex issue. With v14.2.1, there were many times when it would see a Speed Limit sign that was not meant for the car (one catered for tractor trailers, for example) or even a route sign, and it would incorrectly adjust the speed. It did this on the highway several times, mistaking a Route 30 sign for a 30 MPH sign, then beginning to decelerate from 55 MPH to 30 MPH on the highway.

This required an intervention. I also had an issue leaving a drive-thru Christmas lights display, where the owners of the private property had a 15 MPH sign posted nearly every 200 yards for about a mile and a half.

The car identified it as a 55 MPH sign and sped up significantly. This caused an intervention, and I had to drive manually.

It seems like FSD v14.2.1.25 is now less reliant on the signage (maybe because it was incorrectly labeling it) and more reliant on map data or the behavior of nearby traffic.

A good example was on the highway today: despite the car reading that Route 30 sign and the Speed Limit sign on the center screen reading 30 MPH, the car did not decelerate. It continued at the same speed, but I’m not sure if that’s because of traffic or map data:

A Lone Complaint

Tesla has said future updates will include parking improvements, and I’m really anxious for them, because parking is not great. I’ve had some real issues with it over the past couple of months.

Today was no different:

Full Self-Driving v14.2.1.25 is really a massive improvement over past versions, and it seems apparent that Tesla took its time with fixing the bugs, especially with highway operation on v14.2.1.

Continue Reading

News

Tesla hints at Starlink integration with recent patent

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

Published

on

Credit: Grok

Tesla hinted at a potential Starlink internet terminal integration within its vehicles in a recent patent, which describes a vehicle roof assembly with integrated radio frequency (RF) transparency.

The patent, which is Pub. No U.S. 2025/0368267 describes a new vehicle roof that is made of RF-transparent polymer materials, allowing and “facilitating clear communication with external devices and satellites.”

Tesla believes that a new vehicle roof design, comprised of different materials than the standard metallic or glass elements used in cars today, would allow the company to integrate modern vehicular technologies, “particularly those requiring radio frequency transmission and reception.

Instead of glass or metallic materials, Tesla says vehicles may benefit from high-strength polymer blends, such as Polycarbonate, Acrylonitrile Butadiene Styrene, or Acrylonitrile Styrene Acrylate.

These materials still provide ideal strength metrics for crashworthiness, stiffness for noise, vibration, and harshness control, and are compliant with head impact regulations.

They would also enable better performance with modern technologies, like internet terminals, which need an uninterrupted signal to satellites for maximum reception. Tesla writes in the patent:

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

One of the challenges Tesla seems to be aware of with this type of roof design is the fact that it will still have to enable safety and keep that at the forefront of the design. As you can see in the illustration above, Tesla plans to use four layers to increase safety and rigidity, while also combating noise and vibration.

It notes in the patent that disclosed examples still meet the safety requirements outlined in the Federal Motor Vehicle Safety Standards (FMVSS).

Starlink integrated directly into Tesla vehicles would be a considerable advantage for owners. It would come with a handful of distinct advantages.

Initially, the inclusion of Starlink would completely eliminate cellular dead zones, something that is an issue, especially in rural areas. Starlink would provide connectivity in these remote regions and would ensure uninterrupted service during road trips and off-grid adventures.

It could also be a critical addition for Robotaxi, as it is crucial to have solid and reliable connectivity for remote monitoring and fleet management.

Starlink’s growing constellation, thanks to SpaceX’s routine and frequent launch schedule, will provide secure, stable, and reliable internet connectivity for Tesla vehicles.

SpaceX reaches incredible milestone with Starlink program

Although many owners have already mounted Starlink Mini dishes under their glass roofs for a similar experience, it may be integrated directly into Teslas in the coming years, either as an upgrade or a standard feature.

Continue Reading

News

Tesla supplements Holiday Update by sneaking in new Full Self-Driving version

It seems Tesla was waiting for the Hardware 4 rollout, as it wanted to also deploy a new Full Self-Driving version to those owners, as it appeared in the release notes for the Holiday Update last night.

Published

on

Credit: Tesla

Tesla has surprised some owners by sneaking in a new Full Self-Driving version with the wide release of the Holiday Update, which started rolling out to Hardware 4 owners on Friday night.

Tesla has issued a controlled and very slow release pattern with the Holiday Update, which rolls out with Software Version 2025.44.25.5.

For the past two weeks, as it has rolled out to Hardware 3 and older Tesla owners, the company has kept its deployment of the new Software Version relatively controlled.

It seems Tesla was waiting for the Hardware 4 rollout, as it wanted to also deploy a new Full Self-Driving version to those owners, as it appeared in the release notes for the Holiday Update last night.

Tesla Full Self-Driving v14.2.1.25 made its first appearance last night to Hardware 4 owners who are members of the Early Access Program (EAP). It appears to be a slight refinement from FSD v14.2.1, which has been out for a couple of weeks.

Many owners welcome the new FSD version, us included, because we’ve been less than impressed with v14.2.1. We have experienced some minor regressions with v14.2.1, especially with Speed Limit recognition, Speed Profile tinkering, and parking performance.

As it stands, Full Self-Driving is still particularly impressive, but Tesla is evidently having an issue with some of the adjustments, as it is still refining some of the performance aspects of the suite. This is expected and normal with some updates, as not all of them are an improvement in all areas; we routinely see some things backtrack every once in a while.

This new FSD version is likely to take care of those things, but it also includes all of the awesome Holiday Update features, which include:

  • Grok with Navigation Commands (Beta) – Grok will now add and edit destinations.
  • Tesla Photobooth – Take pictures inside your car using the cabin-facing camera
  • Dog Mode Live Activity – Check on your four-legged friend on your phone through periodic snapshots taken of the cabin
  • Dashcam Viewer Update – Includes new metrics, like steering wheel angle, speed, and more
  • Santa Mode – New graphics, trees, and a lock chime
  • Light Show Update – Addition of Jingle Rush light show
  • Custom Wraps and License Plates – Colorizer now allows you to customize your vehicle even further, with custom patterns, license plates, and tint
  • Navigation Improvements – Easier layout and setup
  • Supercharger Site Map – Starting at 18 pilot locations, a 3D view of the Supercharger you’re visiting will be available
  • Automatic Carpool Lane Routing – Navigation will utilize carpool lanes if enabled
  • Phone Left Behind Chime – Your car will now tell you if you left a phone inside
  • Charge Limit Per Location – Set a charge limit for each location
  • ISS Docking Simulator –  New game
  • Additional Improvements – Turn off wireless charging pad, Spotify improvements, Rainbow Rave Cave, Lock Sound TRON addition

Tesla also added two other things that were undocumented, like Charging Passport and information on USB drive storage to help with Dashcam.

Continue Reading