Connect with us

News

SpaceX returns Starship booster to factory after two major Raptor tests

Published

on

For the sixth time this year, SpaceX has returned the same Super Heavy booster prototype to its South Texas Starship factory after completing several tests.

Why is unclear. Super Heavy Booster 7 left the factory for the first time in March 2022 and has been stuck in a seemingly continuous state of testing, rework, and retesting ever since. While the pace of testing and progress was in many ways more aggressive from 2019 to mid-2021, it still can’t be said that SpaceX has been slacking off in 2022. Booster 7 alone completed more than 24 distinct tests (including six static fires) between early April and late November.

But in a shift from the first three or so years of steel Starship development, SpaceX CEO Elon Musk has ceased to be a consistent source of information on the purpose and results of many of those tests, even as NASA has begun to funnel hundreds of millions of taxpayer dollars into the Starship program. Save for occasional tidbits from SpaceX, Musk, and NASA; or deep unofficial analyses of public information, the day-to-day or week-to-week status of Starship has generally been relegated to speculation. Over the last few months, that information void has only grown larger.

Perhaps the biggest near-term update this year came from a senior NASA official on October 31st. In an advisory briefing, Mark Kirasich – Deputy Associate Administrator for Artemis Campaign Development – offered a surprising amount of detail about SpaceX’s near-term plans and even reported that Starship’s first orbital test flight was expected as early as December 2022, pending several crucial tests. But more than five weeks later, SpaceX appears to have only made a modest amount of progress towards those milestones and has yet to attempt the two most important tests.

Nonetheless, some progress – however indeterminate without official information – has been made. As of Kirasich’s briefing, SpaceX was in the middle of a relatively minor series of cautious propellant loading tests with Booster 7 and Ship 24, which were stacked on October 20th. After three more partial full-stack tests in the first seven days of November, Ship 24 was removed. Aside from the visible steps SpaceX took after, little is known about the outcome of those propellant loading tests.

Advertisement
-->

Ship 24’s fate is a different story, but Super Heavy B7 appeared to make it through full-stack testing in great shape. On November 14th, Booster 7 completed a record-breaking 14-engine static fire, doubling its previous record of seven engines and likely becoming one of the most powerful rockets in history. Musk simply stated that the “test went well”.

Poor weather undoubtedly contributed, but it would be another 15 days before Booster 7’s next test. On November 29th, after an aborted test on the 28th, SpaceX followed Booster 7’s record-breaking 14-engine static fire with a longer 13-second test of 11 Raptors. Before engine ignition, SpaceX loaded Booster 7 with around 2800 tons (~6.2M lb) of liquid oxygen (LOx) propellant in less than 90 minutes, making it a partial wet dress rehearsal (the methane tank was barely filled) as well. Musk called it “a little more progress towards Mars” and SpaceX shared a photo of the static fire on Twitter, but the results of the test – meant “to test autogenous pressurization” – were kept mostly opaque.

That uncertainty didn’t help when two of Booster 7’s 33 Raptor engines were removed immediately after the long-duration test. Then, Booster 7 was removed from Starbase’s lone ‘orbital launch mount’ on December 2nd and rolled back to the factory’s High Bay assembly facility on December 3rd. Historically, SpaceX has only returned Booster 7 to the factory to repair damage or install missing hardware. Without official information, it’s impossible to say why Booster 7 returned for the sixth time.

The most optimistic explanation is that SpaceX brought the Super Heavy booster back to the factory to fully close out its engine section heat shield, which currently has 20 missing panels for each of its outer Raptor engines. But there’s a good reason that those panels were never reinstalled. Any replacements would need to be modified to ensure that the ad-hoc system installed to prevent the conditions that led to Booster 7’s first explosion from recurring can still be used for future static fire tests. Even then, it’s unclear why SpaceX would need to reinstall those panels now for Booster 7’s upcoming 33-engine static fire(s) and full-stack wet dress rehearsal(s) when they weren’t needed for 11 and 14-engine static fires and a dozen other fire-free tests.

Depending on why Booster 7 is back at the factory, there is a precedent for it returning to the launch site as early as next week. Alternatively, if major work or repairs are required, it could be six weeks before SpaceX returns the rocket to the launch pad. Given that the full wet dress rehearsals and one or several 33-engine static fires standing between Booster 7 and flight readiness will be riskier and more challenging than any other test the prototype has completed to date, there is no real chance that Starship will be ready for its first orbital launch this year.

Advertisement
-->

In fact, without detailed information, especially regarding Ship 24’s mysterious state, it’s difficult to pinpoint a viable target for Starship’s orbital launch debut more specific than the first half of 2023. But with any luck, even if it requires a substantially longer wait, SpaceX’s recent decision to make Starbase move slower and break fewer things will hopefully pay off with a successful debut sometime next year.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.

Published

on

Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage. 

These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.

FSD mileage milestones

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities. 

City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos. 

Tesla’s data edge

Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own. 

Advertisement
-->

So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.” 

“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X. 

Continue Reading

News

Tesla starts showing how FSD will change lives in Europe

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Published

on

Credit: Grok Imagine

Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options. 

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Officials see real impact on rural residents

Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”

The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.

What the Ministry for Economic Affairs and Transport says

Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents. 

Advertisement
-->

“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe. 

“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post

Continue Reading

News

Tesla China quietly posts Robotaxi-related job listing

Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Published

on

Credit: Tesla

Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China. 

As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Robotaxi-specific role

The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi. 

Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.

China Robotaxi launch

China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.

Advertisement
-->

This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees. 

Continue Reading