Connect with us

News

SpaceX Starship fires up three Raptor engines in prelude to high-altitude flight

Starship SN8 appears to have successfully fired up three Raptor engines simultaneously in a huge milestone for both the rocket and engine. (NASASpaceflight - bocachicagal)

Published

on

Update: At 1:21am CDT (6:21 UTC) on October 20th, Starship SN8 ignited all three of its Raptors’ preburners, producing a spectacular fireball noticeably larger than the one produced during the rocket’s first October 19th preburner test. A mere two hours later, with no break in between, the steel rocket prototype fully ignited all three Raptor engines for the first time ever, likely producing thrust equivalent to ~90% of a nine engine Falcon 9 booster for a brief moment.

Crucially, aside from physically demonstrating Raptor’s multi-engine capabilities, Starship SN8 – already a first-of-a-kind prototype – completed and survived a static fire seemingly unscathed on its first attempt. If the data SpaceX gathers from the milestone is as good as the test appeared to be, the company could be just a few days away from installing Starship SN8’s recently-stacked nosecone, followed by a second triple-Raptor static fire test. If that second static fire goes well, SN8’s next task will be the first high-altitude Starship flight test.

Minutes after an adjacent highway was scheduled to reopen, SpaceX’s first high-altitude Starship prototype – serial number 8 – attempted what was likely the first multi-engine Raptor test ever.

At 6:01 am, October 19th, Starship SN8’s trio of Raptor engines were barely unleashed, producing a large fireball indicative of a ‘preburner’ ignition test. One of the most complex rocket engines ever developed, Raptor relies on a maximally efficient but temperamental “full-flow staged combustion” cycle (FFSC), a concise name for the many, many steps required to turn liquid propellant into thrust.

Adding additional difficulty, Raptor’s full-flow staged combustion necessitates ignition of gaseous oxygen and methane in the combustion chamber. Given that the Raptor-powered Starship spacecraft and Super Heavy booster exclusively use cryogenic liquid methane and oxygen, a major challenge posed by FFSC is the need to efficiently turn that ultra-cold propellant into hot gas almost instantaneously. This is where gas generators (or preburners) come in.

In a full-flow staged combustion engine, both oxidizer and fuel require their own separate turbopumps, which then require their own preburners to create the pressures needed to power those turbopumps and the gas the combustion chamber ignites to produce thrust. A step further, to enable high combustion chamber pressure like Raptor’s 300+ bar (~4400+ psi), those preburners need to produce gas at far higher pressures to account for energy losses as those gases wind their way through the engine’s plumbing.

Advertisement

As a result, preburners are possibly the single most stressed system in an engine like Raptor. Unsurprisingly, this has often lead SpaceX to separately test each engine’s preburners as a sort of partial static fire before the actual engine ignition test. This is the test Starship SN8 attempted in the early morning on October 19th, representing Raptor’s very first multi-engine ignition event.

Curiously, moments before preburner ignition, one of the three Raptor engines appeared to command an aggressive jet-like vent of liquid oxygen identical to a vent seen just a few hours prior during the first aborted preburner test. There’s thus a chance that only two of SN8’s three Raptor engines successfully started their preburners

Raptor is the first FFSC engine in the world to fly and – as far as the duration of lifetime testing and volume production goes – is almost certainly the most advanced of the three FFSC programs to graduate to static fire tests. In other words, given that SN8’s test campaign is the first time SpaceX has ever attempted to operate multiple adjacent Raptor engines at the same time, it’s not a huge surprise that progress towards the first three-engine static fire has been cautious and halting. Mirroring its Sunday/Monday testing, SpaceX will put Starship SN8 through another preburner and/or static fire attempt between 9pm and 6am CDT (UTC-5) on October 19/20. Even more 9-6 test windows are scheduled on October 21st and 22nd.

Nose section stacking beginneth. (NASASpaceflight – bocachicagal)

Meanwhile, not long after Starship SN8’s first preburner test was completed, SpaceX teams rolled a section of five steel rings inside a small windbreak and stacked the first truly functional nosecone – already outfitted with forward flaps – atop it. If Starship SN8 survives its first full triple-Raptor preburner and static fire tests, that new nosecone will likely be rolled to the launch pad for in-situ installation, topping off the rocket ahead of a spectacular 15 km (~50,000 ft) flight test.

A visual comparison of Starship Mk1’s (left) and Starship SN8’s nose sections make clear some of the refinements SpaceX has made in ~12 months. (NASASpaceflight – Nomadd)

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Model Y may gain an extra 90 miles of range with Panasonic’s next-gen battery

The Japanese company is pursuing an anode-free design.

Published

on

Credit: Tesla Manufacturing

Panasonic is developing a new high-capacity EV battery that could potentially extend the range of a Tesla Model Y by 90 miles. 

The Japanese company, one of Tesla’s key battery suppliers, is pursuing an anode-free design that it says could deliver a “world-leading” level of capacity by the end of 2027.

Panasonic’s anode-free design

The technology Panasonic is pursuing would eliminate the anode during the manufacturing process, as noted in a Reuters report. By freeing up space for more active cathode materials such as nickel, cobalt, and aluminum, the Japanese company expects a 25% increase in capacity without expanding battery size. 

That could allow Tesla’s Model Y to gain an estimated 145 kilometers (90 miles) of additional range if equipped with a battery that matches its current pack’s size. At the same time, Panasonic could use smaller, lighter batteries to achieve the Model Y’s current range. 

Panasonic also aims to reduce reliance on nickel, which remains one of the more costly raw materials. A senior executive previewed the initiative to reporters ahead of a scheduled presentation by Panasonic Energy’s technology chief, Shoichiro Watanabe.

Advertisement

Tesla implications

The breakthrough, if achieved, could strengthen Panasonic’s position as Tesla’s longest-standing battery partner at a time when the automaker is preparing to enter an era of extreme scale driven by high-volume products like the Cybercab and Optimus.

Elon Musk has stated that products like Optimus would be manufactured at very high scale, so it would likely be an all-hands-on-deck situation for the company’s suppliers.

Panasonic did not share details on production costs or how quickly the new batteries might scale for commercial applications. That being said, the Japanese supplier has long been a partner of Tesla, so it makes sense for the company to also push for the next generation of battery innovation while the EV maker pursues even more lofty ambitions.

Continue Reading

Elon Musk

Tesla called ‘biggest meme stock we’ve ever seen’ by Yale associate dean

Published

on

Credit: Tesla

Tesla (NASDAQ: TSLA) is being called “the biggest meme stock we’ve ever seen” by Yale School of Management Senior Associate Dean Jeff Sonnenfeld, who made the comments in a recent interview with CNBC.

Sonnenfeld’s comments echo those of many of the company’s skeptics, who argue that its price-to-earnings ratio is far too high when compared to other companies also in the tech industry. Tesla is often compared to companies like Apple, Nvidia, and Microsoft when these types of discussions come up.

Fundamentally, yes, Tesla does trade at a P/E level that is significantly above that of any comparable company.

However, it is worth mentioning that Tesla is not traded like a typical company, either.

Here’s what Sonnenfeld said regarding Tesla:

“This is the biggest meme stock we’ve ever seen. Even at its peak, Amazon was nowhere near this level. The PE on this, well above 200, is just crazy. When you’ve got stocks like Nvidia, the price-earnings ratio is around 25 or 30, and Apple is maybe 35 or 36, Microsoft around the same. I mean, this is way out of line to be at a 220 PE. It’s crazy, and they’ve, I think, put a little too much emphasis on the magic wand of Musk.”

Many analysts have admitted in the past that they believe Tesla is an untraditional stock in the sense that many analysts trade it based on narrative and not fundamentals. Ryan Brinkman of J.P. Morgan once said:

“Tesla shares continue to strike us as having become completely divorced from the fundamentals.”

Dan Nathan, another notorious skeptic of Tesla shares, recently turned bullish on the stock because of “technicals and sentiment.” He said just last week:

“I think from a trading perspective, it looks very interesting.”

Nathan said Tesla shares show signs of strength moving forward, including holding its 200-day moving average and holding against current resistance levels.

Sonnenfeld’s synopsis of Tesla shares points out that there might be “a little too much emphasis on the magic wand of Musk.”

Elon Musk just bought $1 billion in Tesla stock, his biggest purchase ever

This could refer to different things: perhaps his recent $1 billion stock buy, which sent the stock skyrocketing, or the fact that many Tesla investors are fans and owners who do not buy and sell on numbers, but rather on news that Musk might report himself.

Tesla is trading around $423.76 at the time of publication, as of 3:25 p.m. on the East Coast.

Continue Reading

News

Tesla makes big change to Full Self-Driving doghouse that drivers will like

Now, it is changing the timeframe of which strikes will be removed, cutting it in half. The strikes will be removed every 3.5 days, as long as no strikes are received during the time period.

Published

on

tesla cabin facing camera
Tesla's Cabin-facing camera is used to monitor driver attentiveness. (Credit: Andy Slye/YouTube)

Tesla is making a big change to its Full Self-Driving doghouse that drivers will like.

The doghouse is a hypothetical term used to describe the penalty period that Tesla applies to drivers who receive too many infractions related to distracted driving.

Previously, Tesla implemented a seven-day ban on the use of Full Self-Driving for those who received five strikes in a vehicle equipped with a cabin camera and three strikes for those without a cabin camera.

It also forgave one strike per week of Full Self-Driving use, provided the driver did not receive any additional strikes during the seven-day period.

Now, it is changing the timeframe of which strikes will be removed, cutting it in half. The strikes will be removed every 3.5 days, as long as no strikes are received during the time period.

The change was found by Not a Tesla App, which noticed the adjustment in the Owner’s Manual for the 2025.32 Software Update.

The system undoubtedly helps improve safety as it helps keep drivers honest. However, there are definitely workarounds, which people are using and promoting for monetary gain, and you can find them on basically any online marketplace, including TikTok shop and Amazon:

People are marketing the product as an FSD cheat device, which the cabin-facing camera will not be able to detect, allowing you to watch something on a phone or look through the windshield at the road.

The safeguards implemented by Tesla are designed to protect drivers from distractions and also protect the company itself from liability. People are still using Full Self-Driving as if it were a fully autonomous product, and it is not.

Tesla even says that the driver must pay attention and be ready to take over in any scenario:

“Yes. Autopilot is a driver assistance system that is intended to be used only with a fully attentive driver. It does not turn a Tesla into a fully autonomous vehicle.

Before enabling Autopilot, you must agree to “keep your hands on the steering wheel at all times” and to always “maintain control and responsibility for your vehicle.” Once engaged, Autopilot will also deliver an escalating series of visual and audio warnings, reminding you to place your hands on the wheel if insufficient torque is applied or your vehicle otherwise detects you may not be attentive enough to the road ahead. If you repeatedly ignore these warnings, you will be locked out from using Autopilot during that trip.

You can override any of Autopilot’s features at any time by steering or applying the accelerator at any time.”

It is good that Tesla is rewarding those who learn from their mistakes with this shorter timeframe to lose the strikes. It won’t be needed forever, though, as eventually, the company will solve autonomy. The question is: when?

Continue Reading

Trending