Connect with us

News

SpaceX Starship eyes Tuesday launch after FAA communication breakdown causes delays

Published

on

Two new sourced reports suggest that SpaceX’s fast-moving approach to Starship development and a shocking level of naivety and ineptitude on behalf of the FAA’s regulatory responsibilities combined to delay the latest Starship test flight.

As previously discussed on Teslarati, SpaceX was clearly and publicly targeting a Starship launch as early as 12pm to 5pm on Monday, March 29th after unknown issues delayed a Friday attempt. Those plans were writ large on SpaceX’s own website and via CEO Elon Musk’s tweets a full three days before launch and confirmed by road closures, notices to mariners, and the FAA’s own flight restrictions and advisories 24-48 hours prior. Around 11am CDT Monday, Musk revealed that SpaceX had been forced to call off the day’s launch attempt because an FAA-required inspector was “unable to reach” Boca Chica in time.

Now, per reports separately corroborated by The Verge reporter Joey Roulette and Washington Post reporter Christian Davenport, a clearer picture of what exactly transpired is available.

Roulette first broke the news, offering a better look at a portion of the debacle. Per “a source,” SpaceX had apparently told the FAA inspector – who had been waiting all week for Starship SN11’s launch debut – that plans for a Monday recycle had been canceled. The inspector then flew home to Florida. However, as things often do and have, the situation rapidly changed and SpaceX suddenly found itself in a position to launch on Monday.

According to the apparent FAA-side source, SpaceX dropped that change of plans on the agency’s lap late on Sunday, leading the inspector to “[scramble]” onto a Monday flight that was somehow too late to arrive before the 5pm CDT end of Starship’s test window. In a statement, the FAA chided SpaceX, stating that the company “must provide adequate notice of its launch schedule to allow for a safety inspector to travel to Boca Chica.”

Advertisement
-->

Under that description of events, it would be hard not to find SpaceX clearly in the wrong. Mere hours of notice – and only offered late on Sunday evening – would make it difficult for anyone to abruptly arrange a 1300-mile, multi-stop flight. At the same time, though, someone capable of singlehandedly scrubbing an entire rocket launch attempt on a whim (or an accident) is obviously not just “anyone” and a functional regulatory apparatus probably wouldn’t leave the entirety of that substantial responsibility up to a single employee.

As it so happened, Roulette’s source only offer part of the picture. According to Christian Davenport and his sources, SpaceX (or someone) did tell the FAA inspector that it was safe to head home on Friday because the company was struggling to secure road closures from Cameron County for a Monday launch attempt. Apparently, the issue was so extreme that SpaceX wasn’t sure if a launch on any day of the next week would be possible.

However, sometime early on Sunday morning, SpaceX secured a road closure for a Monday Starship launch attempt. According to Davenport, SpaceX emailed the FAA inspector but he “didn’t see the email,” which presumably served as a notice of plans for a Starship launch attempt. Logically, SpaceX then began attempting to call the FAA (inspector?) but didn’t get an answer or call back until “late Sunday night.”

Via Cameron County’s explicitly public road closure announcement website, Monday’s road closure was granted no later than 11am CDT. Assuming SpaceX emailed the FAA inspector around then, that email effectively served as a notice of launch plans more than 24 hours before the window was scheduled to open. If SpaceX didn’t somehow forget to email until hours later, Davenport’s description implies that it took SpaceX hours of constant phone calls before the FAA finally responded.

If that series of events is accurate, as it seems to be, it’s a searing indictment of systematic ineptitude and laziness on behalf of the FAA. Having changed SpaceX’s Starship launch license to necessitate the presence of an FAA inspector mere weeks ago, thus giving a single person the power to scrub an entire launch attempt, the regulatory agency appears to have entrusted the entirety of that responsibility to a single “inspector.” Knowing full well that SpaceX works continuously with multiple shifts after almost two years of managing Starhopper and Starship tests, hops, and launches, the FAA then failed to ensure that some kind of communications infrastructure was in place to keep SpaceX appraised about the availability of a single inspector it now fully hinged on for all future Starship launches.

If, as the phrasing in both reports suggests, the FAA allotted a single government inspector to preside over all future Starship launches, that alone would bely a ridiculous level of ineptitude and naivete (or ignorance). To then trust that single person with nearly all of the responsibility of maintaining contact with SpaceX, day and night, would be akin to the FAA consciously guaranteeing that a disruptive breakdown in communications like this one would happen.

Advertisement
-->

All told, SpaceX likely also needs to do some recalibration to better mesh and coexist with the FAA’s glacial reaction time and pace of work. However, the FAA is not going to be winning any favors if it continues to manage SpaceX’s Starship licensing in a manner as inept and cavalier as it has been. Far more importantly, if the FAA – one of the largest, best-funded regulatory bodies responsible for ensuring the safety of some of the most complex systems and vehicles on Earth – is unable to perform tasks as rudimentary as scheduling and contingency planning, it’s difficult to imagine how that same office could be trusted to regulate – and make safer – systems as extraordinarily complex as launch vehicles.

With any luck, the FAA will prove that the last four months have been minor bumps in the road to reliably and professionally licensing and regulating SpaceX’s Starship launch vehicle. However, after two separate demonstrations of systematic mismanagement over a mere four Starship launch attempts, it’s becoming harder and harder to soundly argue that the FAA still deserves the benefit of the doubt.

Assuming the FAA inspector is on schedule, Starship SN11’s next launch attempt is now scheduled between 7am and 3pm CDT (UTC-5) on Tuesday, March 30th.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla’s northernmost Supercharger in North America opens

Published

on

Credit: Tesla

Tesla has opened its northernmost Supercharger in Fairbanks, Alaska, with eight V4 stalls located in one of the most frigid cities in the U.S.

Located just 196 miles from the Arctic Circle, Fairbanks’s average temperature for the week was around -12 degrees Fahrenheit. However, there are plenty of Tesla owners in Alaska who have been waiting for more charging options out in public.

There are only 36 total Supercharger stalls in Alaska, despite being the largest state in the U.S.

Eight Superchargers were added to Fairbanks, which will eventually be a 48-stall station. Tesla announced its activation today:

The base price per kWh is $0.43 at the Fairbanks Supercharger. Thanks to its V4 capabilities, it can charge at speeds up to 325 kW.

Despite being the northernmost Supercharger in North America, it is not even in the Top 5 northernmost Superchargers globally, because Alaska is south of Norway. The northernmost Supercharger is in Honningsvåg, Norway. All of the Top 5 are in the Scandanavian country.

Tesla’s Supercharger expansion in 2025 has been impressive, and although it experienced some early-quarter slowdowns due to V3-to-V4 hardware transitions, it has been the company’s strongest year for deployments.

Through the three quarters of 2025, the company has added 7,753 stations and 73,817 stalls across the world, a 16 percent increase in stations and an 18 percent increase in stalls compared to last year.

Tesla is on track to add over 12,000 stalls for the full year, achieving an average of one new stall every hour, an impressive statistic.

Recently, the company wrapped up construction at its Supercharger Oasis in Lost Hills, California, a 168-stall Supercharger that Tesla Solar Panels completely power. It is the largest Supercharger in the world.

Continue Reading

News

Tesla hints toward Premium Robotaxi offering with Model S testing

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

Published

on

Credit: Sawyer Merritt | X

Tesla Model S vehicles were spotted performing validation testing with LiDAR rigs in California today, a pretty big switch-up compared to what we are used to seeing on the roads.

Tesla utilizes the Model Y crossover for its Robotaxi fleet. It is adequately sized, the most popular vehicle in its lineup, and is suitable for a wide variety of applications. It provides enough luxury for a single rider, but enough room for several passengers, if needed.

However, the testing has seemingly expanded to one of Tesla’s premium flagship offerings, as the Model S was spotted with the validation equipment that is seen entirely with Model Y vehicles. We have written several articles on Robotaxi testing mules being spotted across the United States, but this is a first:

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

It seems to hint that Tesla could add a premium, more luxury offering to its Robotaxi platform eventually. Think about it: Uber has Uber Black, Lyft has Lyft Black. These vehicles and services are associated with a more premium cost as they combine luxury models with more catered transportation options.

Tesla could be testing the waters here, and it could be thinking of adding the Model S to its fleet of ride-hailing vehicles.

Reluctant to remove the Model S from its production plans completely despite its low volume contributions to the overall mission of transitioning the world to sustainable energy, the flagship sedan has always meant something. CEO Elon Musk referred to it, along with its sibling Model X, as continuing on production lines due to “sentimental reasons.”

However, its purpose might have been expanded to justify keeping it around, and why not? It is a cozy, premium offering, and it would be great for those who want a little more luxury and are willing to pay a few extra dollars.

Of course, none of this is even close to confirmed. However, it is reasonable to speculate that the Model S could be a potential addition to the Robotaxi fleet. It’s capable of all the same things the Model Y is, but with more luxuriousness, and it could be the perfect addition to the futuristic fleet.

Continue Reading

News

Rivian unveils self-driving chip and autonomy plans to compete with Tesla

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

Published

on

Credit: Rivian

Rivian unveiled its self-driving chip and autonomy plans to compete with Tesla and others at its AI and Autonomy Day on Thursday in Palo Alto, California.

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

CEO RJ Scaringe said it will learn and become more confident and robust as more miles are driven and it gathers more data. This is what Tesla uses through a neural network, as it uses deep learning to improve with every mile traveled.

He said:

“I couldn’t be more excited for the work our teams are driving in autonomy and AI. Our updated hardware platform, which includes our in-house 1600 sparse TOPS inference chip, will enable us to achieve dramatic progress in self-driving to ultimately deliver on our goal of delivering L4. This represents an inflection point for the ownership experience – ultimately being able to give customers their time back when in the car.”

At first, Rivian plans to offer the service to personally-owned vehicles, and not operate as a ride-hailing service. However, ride-sharing is in the plans for the future, he said:

“While our initial focus will be on personally owned vehicles, which today represent a vast majority of the miles to the United States, this also enables us to pursue opportunities in the rideshare space.”

The Hardware

Rivian is not using a vision-only approach as Tesla does, and instead will rely on 11 cameras, five radar sensors, and a single LiDAR that will face forward.

It is also developing a chip in-house, which will be manufactured by TSMC, a supplier of Tesla’s as well. The chip will be known as RAP1 and will be about 50 times as powerful as the chip that is currently in Rivian vehicles. It will also do more than 800 trillion calculations every second.

RAP1 powers the Autonomy Compute Module 3, known as ACM3, which is Rivian’s third-generation autonomy computer.

ACM3 specs include:

  • 1600 sparse INT8 TOPS (Trillion Operations Per Second).
  • The processing power of 5 billion pixels per second.
  • RAP1 features RivLink, a low-latency interconnect technology allowing chips to be connected to multiply processing power, making it inherently extensible.
  • RAP1 is enabled by an in-house developed AI compiler and platform software

As far as LiDAR, Rivian plans to use it in forthcoming R2 cars to enable SAE Level 4 automated driving, which would allow people to sit in the back and, according to the agency’s ratings, “will not require you to take over driving.”

More Details

Rivian said it will also roll out advancements to the second-generation R1 vehicles in the near term with the addition of UHF, or Universal Hands-Free, which will be available on over 3.5 million miles of roadway in the U.S. and Canada.

Rivian will now join the competitive ranks with Tesla, Waymo, Zoox, and others, who are all in the race for autonomy.

Continue Reading