Connect with us
LG-energy-solution-100-renweable-battery-plant LG-energy-solution-100-renweable-battery-plant

News

LG Energy Solution developing LFP battery for EV market

(Credit: LG Energy Solution)

Published

on

LG Energy Solution, a subsidiary of LG Chem, has started developing its own lithium-iron-phosphate (LFP) batteries to be mainly sold to Chinese companies. 

LG Energy Solution has already started developing its LFP batteries in its Daejeon lab. The battery manufacturer plans to build a pilot line for its lithium-iron-phosphate batteries next year at the earliest. LG’s LFP battery cells will take the pouch form rather than the prismatic or cylindrical cells favored by Chinese battery makers.

LG Energy Solution plans to work with its parent company LG Chem to supply the materials it needs for the LFP batteries. Korean media outlet, The Elec, speculates that LG Chem will seek a joint venture with a Chinese partner to supply raw materials for LG Energy Solution’s LFP batteries. 

Tesla leads the way to LFP cells

Tesla started using LFP batteries from China-based battery supplier Contemporary Amperex Technology (CATL) last year. CATL’s LFP batteries were for Giga Shanghai’s Model 3 Standard Range Plus. Since then, Tesla had started using LFP batteries in the base Made-in-China (MIC) Model 3 and base MIC Model Y. 

By May 2021, Tesla announced that it would be using LFP batteries in its Megapack energy storage system. And just last month, Tesla gave US-based reservation holders the option to receive a Model 3 SR+ equipped with an LFP battery pack.

LFP Battery Market

Tesla’s switch to LFP batteries seemed like a gamble when it was first announced—one that has paid off rather well. LG Energy Solution initially resisted developing LFP batteries because iron-based cells have a lower energy density, resulting in shorter ranges per charge. LFP batteries are also heavier than their nickel-cobalt-manganese (NCM) and nickel-cobalt-aluminum (NCA) counterparts. However, the widespread adoption of LFP batteries by EV makers appears to have changed the company’s mind.

Tesla only uses LFP batteries for the base variants of its vehicles because of the lower range they provide. However, there are benefits to LFP batteries. For instance, iron-based cells are cheaper to produce and rarely overheat, something LG Energy Solution might want to explore given the recent issues with GM’s Chevy Bolt EV.

Advertisement
-->

Developing LFP batteries could be a good business move for LG Energy Solution in the long run. More EV startups, like Rivian and even Apple, are reportedly expected to use iron-based cells in their base vehicles as well. 

The Teslarati team would appreciate hearing from you. If you have any tips, reach out to me at maria@teslarati.com or via Twitter @Writer_01001101.

Maria--aka "M"-- is an experienced writer and book editor. She's written about several topics including health, tech, and politics. As a book editor, she's worked with authors who write Sci-Fi, Romance, and Dark Fantasy. M loves hearing from TESLARATI readers. If you have any tips or article ideas, contact her at maria@teslarati.com or via X, @Writer_01001101.

Advertisement
Comments

News

Tesla is improving Giga Berlin’s free “Giga Train” service for employees

Published

on

Credit: @Gf4Tesla/X

Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.

The upgraded link, which includes six daily services aligned with shift schedules, reduces travel time to roughly 35 minutes despite ongoing station construction. With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.

New shuttle route

As noted in a report from rbb24, the new service will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.

“The service includes six daily trips, which also cover our shift times,” Tesla stated. “The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory.”

Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The upgrade follows earlier phases of Tesla’s self-funded shuttle program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.

Advertisement
-->

Tesla pushes for majority rail commuting

Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.

The company has repeatedly emphasized its goal of having more than half its staff rely on public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow non-employees to ride the shuttle free of charge, making it a broader mobility option for the region as the site’s output and workforce continue to scale.

Continue Reading

News

Tesla Model 3 and Model Y dominate China’s real-world efficiency tests

The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.

Published

on

Credit: Grok Imagine

Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions. 

The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.

Tesla secures top efficiency results

Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report. 

These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla

Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker. 

“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.

Advertisement
-->

Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.

Continue Reading

Elon Musk

Elon Musk reveals what will make Optimus’ ridiculous production targets feasible

Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.

Published

on

Credit: Tesla Optimus/X

Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.

Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.

The highest volume product

Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.

Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.

Self-replication is key

During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.

Advertisement
-->

The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems. 

If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.

Continue Reading