News
Tesla partners Panasonic and CATL are setting up big battery operations in Europe
As Tesla continues the buildout of its Gigafactory Berlin facility, some of the electric car maker’s battery partners are also setting their sights on the region. Panasonic, Tesla’s longtime battery partner, is looking to explore a big battery venture in Norway. CATL, a key partner for Giga Shanghai’s Model 3 production, is also setting up shop just over 200 miles away from the municipality where Giga Berlin is located.
Europe seems to be on track to become an EV capital, with the region recently revealing its intentions to roll out an aggressive phase-out of internal combustion engine cars. As noted by Barron’s, at least 12 countries are planning a ban on ICE cars in the coming years. UK Prime Minister Boris Johnson even announced on Wednesday that a ban on the sale of gas and diesel vehicles will take effect by 2030.
Amidst this shift to electric cars, the supply of batteries will likely become more important than ever in the coming years. Battery supply will most definitely be a necessity for carmakers, especially as more and more companies begin rolling out large numbers of EVs. This seems to be one of the reasons why Panasonic, Norwegian state-owned oil company Equinor, and Norwegian aluminum group Hydro announced on Wednesday that they had formed a strategic partnership to set up a green battery business in Norway.
The group is looking to complete the initiative’s exploratory phase by mid-2021. The group also aims to look into the development of an integrated supply chain for the production of batteries. Mototsugu Sato, Panasonic’s executive vice president, explained the group’s aims in a statement. “This collaboration combines Panasonic’s position as an innovative technology company and leader in lithium-ion batteries, with the deep industrial experience of Equinor and Hydro,” he said.
CATL, Tesla China’s battery supplier for Gigafactory Shanghai’s LFP Model 3 batteries is also building a facility at Erfurt, Germany that is expected to begin producing batteries around 2022. The facility is quite substantial, with an estimated annual output of about 24 GWh in its final stages. What is quite interesting is that Erfurt is just about 201 miles away from Grunheide, where Tesla’s Gigafactory Berlin is being built.
Little is known about CATL’s plans for its Erfurt factory, but it would not be surprising if the Chinese battery giant becomes a supplier for Tesla’s electric cars in Germany in the future, even if the electric car maker launches its own battery cell production facility in Giga Berlin. Tesla, after all, intends to produce a mass-market $25,000 car in its Berlin plant, which would likely use low-cost, cobalt-free lithium-iron-phosphate (LFP) batteries. Such cells are already being used in the Made-in-China Model 3 Standard Range Plus, which uses CATL-made LFP cells.
Amidst Europe’s aggressive push against the internal combustion engine, it would not be surprising if Tesla’s Gigafactory Berlin ends up perennially operating at full capacity once it enters production. With the Model Y competing in the crossover market and a $25,000 car being positioned for more affordable segments, Tesla may very well end up commanding a substantial portion of Europe’s electric car market.
Elon Musk
SpaceX-xAI merger discussions in advanced stage: report
The update was initially reported by Bloomberg News, which cited people reportedly familiar with the matter.
SpaceX is reportedly in advanced discussions to merge with artificial intelligence startup xAI. The talks could reportedly result in an agreement as soon as this week, though discussions remain ongoing.
The update was initially reported by Bloomberg News, which cited people reportedly familiar with the matter.
SpaceX and xAI advanced merger talks
SpaceX and xAI have reportedly informed some investors about plans to potentially combine the two privately held companies, Bloomberg’s sources claimed. Representatives for both companies did not immediately respond to requests for comment.
A merger would unite two of the world’s largest private firms. xAI raised capital at a valuation of about $200 billion in September, while SpaceX was preparing a share sale late last year that valued the rocket company at roughly $800 billion.
If completed, the merger would bring together SpaceX’s launch and satellite infrastructure with xAI’s computing and model development. This could pave the way for Musk’s vision of deploying data centers in orbit to support large-scale AI workloads.
Musk’s broader consolidation efforts
Elon Musk has increasingly linked his companies around autonomy, AI, and space-based infrastructure. SpaceX is seeking regulatory approval to launch up to one million satellites as part of its long-term plans, as per a recent filing. Such a scale could support space-based computing concepts.
SpaceX has also discussed the feasibility of a potential tie-up with electric vehicle maker Tesla, Bloomberg previously reported. SpaceX has reportedly been preparing for a possible initial public offering (IPO) as well, which could value the company at up to $1.5 trillion. No timeline for SpaceX’s reported IPO plans have been announced yet, however.
News
Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count
That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.
Tesla already has the pieces in place for a full Robotaxi service that works regardless of passenger count, even if the backbone of the program is a small autonomous two-seater.
That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.
Two-seat Cybercabs make perfect sense
During the Q&A portion of the call, Tesla Vice President of Vehicle Engineering Lars Moravy pointed out that more than 90% of vehicle miles traveled today involve two or fewer passengers. This, the executive noted, directly informed the design of the Cybercab.
“Autonomy and Cybercab are going to change the global market size and mix quite significantly. I think that’s quite obvious. General transportation is going to be better served by autonomy as it will be safer and cheaper. Over 90% of vehicle miles traveled are with two or fewer passengers now. This is why we designed Cybercab that way,” Moravy said.
Elon Musk expanded on the point, emphasizing that there is no fallback for Tesla’s bet on the Cybercab’s autonomous design. He reiterated that the autonomous two seater’s production is expected to start in April and noted that, over time, Tesla expects to produce far more Cybercabs than all of its other vehicles combined.
“Just to add to what Lars said there. The point that Lars made, which is that 90% of miles driven are with one or two passengers or one or two occupants, essentially, is a very important one… So this is clearly, there’s no fallback mechanism here. It’s like this car either drives itself or it does not drive… We would expect over time to make far more CyberCabs than all of our other vehicles combined. Given that 90% of distance driven or distance being distance traveled exactly, no longer driving, is one or two people,” Musk said.
Tesla’s robotaxi lineup is already here
The more interesting takeaway from the Q4 and FY 2025 earnings call is the fact that Tesla does not need the Cybercab to serve every possible passenger scenario, simply because the company already has a functional Robotaxi model that scales by vehicle type.
The Cybercab will handle the bulk of the Robotaxi network’s trips, but for groups that need three or four seats, the Model Y fills that role. For higher-end or larger-family use cases, the extended-wheelbase Model Y L could cover five or six occupants, provided that Elon Musk greenlights the vehicle for North America. And for even larger groups or commercial transport, Tesla has already unveiled the Robovan, which could seat over ten people.
Rather than forcing one vehicle to satisfy every use case, Tesla’s approach mirrors how transportation works today. Different vehicles will be used for different needs, while unifying everything under a single autonomous software and fleet platform.
News
Tesla Cybercab spotted with interesting charging solution, stimulating discussion
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.
The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.
But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:
🚨 Tesla Cybercab charging port is in the rear of the vehicle!
Here’s a great look at plugging it in!!
— TESLARATI (@Teslarati) January 29, 2026
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.
However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.
Wireless for Operation, Wired for Downtime
It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.
The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.
Tesla wireless charging patent revealed ahead of Robotaxi unveiling event
However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.
In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.
Induction Charging Challenges
Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.
While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.
Production Timing and Potential Challenges
With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.
It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.
In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.