News
Tesla researcher’s 1 million-mile battery cell breakthrough secures the Semi’s longevity
Tesla lead battery researcher Jeff Dahn and members of the Department of Physics and Atmospheric Science in Dalhousie University recently released a new paper that points to the development of battery cells capable of lasting over 1 million miles on the road, or 20 years if utilized in grid energy storage.
“We conclude that cells of this type should be able to power an electric vehicle for over 1.6 million kilometers (1 million miles) and last at least two decades in grid energy storage,” the team noted in their paper.
It should be noted that the cells utilized by the researchers are pouch cells as opposed to the cylindrical cells favored by Tesla for its electric vehicles. The new cells feature new chemistry, which improves energy, charge rate and more importantly, allows a larger SOC swing. These optimizations result in savings, both in weight and in cost.
The idea of a million-mile battery has been mentioned by CEO Elon Musk in the past, together with the development of a drive unit that is also capable of lasting for a million miles on the road. With such innovations in place, Tesla’s battery cells, which are already among the best in the industry, are bound to last even longer.
Used in electric vehicles and operated at temperatures controlled to 20C, the new battery cells are expected to retain 95% fractional capacity after the million-mile mark is reached. Battery cells used for energy storage, on the other hand, are expected to retain 90% fractional capacity after over 20 years of service. Commenting on Dahn’s research, Desktop Metal CEO Ric Fulop stated that the second life of these improved battery packs have the potential to change the very nature of the grid in the future.
These improvements are pretty much the perfect match for some of Tesla’s upcoming projects, particularly its all-electric truck, the Semi. The Semi was announced with a range of either 300 or 500 miles, though Elon Musk has previously hinted that the vehicle will have closer to 600 miles of range per charge instead. The vehicle has garnered warm reception from several large corporations, from UPS to PepsiCo. As such, it is certain that once the Semi gets deployed, the vehicle will be on the road constantly, putting much strain on the truck’s batteries. Having batteries that last longer will make the vehicle more attractive to potential buyers.
This is where the improvements highlighted by Dahn’s team come in. With longer-lasting batteries, the Tesla Semi could stand toe-to-toe with its diesel-powered counterparts, which typically require an engine overhaul at around the 700k to 1 million-mile mark. Together with a drivetrain that also lasts a million miles and an overall cheaper operating cost, the Tesla Semi could prove to be a competitive alternative to the tried-and-tested diesel rigs of the trucking industry.
It should be noted that Tesla’s current battery tech is likely far ahead of the cells described by Dahn and his team in their paper. Sharing such data, after all, suggests that Tesla has already developed, or at least, is working on an improved version that would allow them to have an even more considerable advantage in the battery segment. This, of course, could widen the gap between Tesla and its competitors in the electric car industry even further.
Jeff Dahn and the Dalhousie University team’s 1-million-mile battery paper could be accessed below.
J. Electrochem. Soc. 2019 Harlow A3031 44 by Simon Alvarez on Scribd
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.
News
Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1
The update was released just a day after FSD v14.2.2 started rolling out to customers.
Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers.
Tesla owner shares insights on FSD v14.2.2.1
Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.
Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.
“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.
Tesla’s FSD v14.2.2 update
Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.
New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.