News
Tales from a Tesla Model S that hit 400,000 miles in 3 years
Tesloop, a Tesla-only intercity shuttle service for Southern California commuters, has reached another milestone with its Model S 90D. In a recent announcement, the company revealed that their Model S, dubbed eHawk, has passed the 400,000-mile mark, making it as one of the highest mileage Teslas in the world today.
eHawk entered service on July 2015, driving from city to city in Southern California and Nevada. By February 2016, the Model S 90D had logged its first 100,000 miles, and by August that year, the full-sized family sedan passed the 200,000-mile mark. In a recent blog post, Tesloop stated that roughly 90% of eHawk’s trips were driven using Autopilot, with Pilots (as the company refers to its drivers) only taking over active driving duties when needed. Tesloop’s Model S 90D currently travels an average of 17,000 miles per month. On the company’s recent post, Haydn Sonnad, Tesloop’s founder, expressed his optimism for the coming years.
“Vehicle connectivity is about to transform the car ownership and user experience. We are close to the point where increasingly sophisticated autonomous driving features and deep connectivity are coupled with electric drivetrains that last hundreds of thousands of miles, a whole new approach to mobility can be offered, that will transform the economics of car ownership and usage, while offering a greatly superior customer experience,” he said.
Over the past 3 years and through 400,000 miles on the road, eHawk has accumulated roughly $19,000 worth of maintenance costs, equating to about $0.05 per miles. This cost is broken down to $6,700 for general vehicle repairs and $12,200 for regularly scheduled maintenance. According to the company’s estimates, a Lincoln Town Car or a Mercedes-Benz GLS class would have accumulated maintenance costs of $88,500 ($0.22/mile) and $98,900 ($0.25/mile), respectively, had the vehicles been driven for 400,000 miles.
The Model S 90D’s high voltage (HV) battery unit was replaced twice under warranty since July 2015. The first battery HV battery replacement was at 194,000 miles, while the second was at 324,000 miles. Average battery degradation over the vehicle’s first 194,000 miles was around 6% with multiple Supercharger stops every day. Between 194,000 – 324,000 miles, the HV battery degradation was estimated at around 22%. According to Tesloop, this was likely due to the company’s practice of constantly charging eHawk to 95-100%, instead of Tesla’s recommended 90-95%. On its blog post, Tesloop shared Tesla’s reminder to the company after its first HV battery replacement.
“Found internal imbalance in HV battery due to consistent supercharging to 100% from a low state of charge (SOC) without any rest periods in between. HV battery has been approved to be replaced. Also recommend that customer does not Supercharge on a regular basis and does not charge to 100% on a regular basis. We also recommend that the customer use scheduled charging to start charge 3 hours after end of drive at low SOC.”

The interior of Tesloop’s Tesla Model S 90D after being in service for 400,000 miles. [Credit: Tesloop]
Apart from its HV battery, Tesloop’s Model S 90D also had its front drive unit replaced under warranty at 36,000 miles. No issues with the vehicle’s drive units have emerged since. The Tesla-exclusive shuttle service also opted to upgrade the rear seating of eHawk to the executive seat option for maximum passenger comfort. According to the company, the seats have held up well over the thousands of passengers the electric car has transported over the years.
Considering the endurance showcased by its Model S 90D, Tesloop estimates that eHawk should be able to last another 600,000 miles over the next five years. If the vehicle achieves this, it would be the first Tesla Model S to reach the 1 million-mile mark.
Tesloop currently operates a fleet of Model S and Model X vehicles. One of its Model X, a 90D named Rex, also achieved its own milestone last month, after it hit 300,000 miles on the road since being deployed. When the all-electric SUV reached the 300,000-mile mark, its battery degradation was estimated at roughly 10%. Since achieving its milestone, however, Tesla has changed the vehicle’s rear drive unit.
News
Tesla is not sparing any expense in ensuring the Cybercab is safe
Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility.
The Tesla Cybercab could very well be the safest taxi on the road when it is released and deployed for public use. This was, at least, hinted at by the intensive safety tests that Tesla seems to be putting the autonomous two-seater through at its Giga Texas crash test facility.
Intensive crash tests
As per recent images from longtime Giga Texas watcher and drone operator Joe Tegtmeyer, Tesla seems to be very busy crash testing Cybercab units. Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility just before the holidays.
Tegtmeyer’s aerial photos showed the prototypes clustered outside the factory’s testing building. Some uncovered Cybercabs showed notable damage and one even had its airbags engaged. With Cybercab production expected to start in about 130 days, it appears that Tesla is very busy ensuring that its autonomous two-seater ends up becoming the safest taxi on public roads.
Prioritizing safety
With no human driver controls, the Cybercab demands exceptional active and passive safety systems to protect occupants in any scenario. Considering Tesla’s reputation, it is then understandable that the company seems to be sparing no expense in ensuring that the Cybercab is as safe as possible.
Tesla’s focus on safety was recently highlighted when the Cybertruck achieved a Top Safety Pick+ rating from the Insurance Institute for Highway Safety (IIHS). This was a notable victory for the Cybertruck as critics have long claimed that the vehicle will be one of, if not the, most unsafe truck on the road due to its appearance. The vehicle’s Top Safety Pick+ rating, if any, simply proved that Tesla never neglects to make its cars as safe as possible, and that definitely includes the Cybercab.
Elon Musk
Tesla’s Elon Musk gives timeframe for FSD’s release in UAE
Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year.
Tesla CEO Elon Musk stated on Monday that Full Self-Driving (Supervised) could launch in the United Arab Emirates (UAE) as soon as January 2026.
Provided that Musk’s timeframe proves accurate, FSD would be able to start saturating the Middle East, starting with the UAE, next year.
Musk’s estimate
In a post on X, UAE-based political analyst Ahmed Sharif Al Amiri asked Musk when FSD would arrive in the country, quoting an earlier post where the CEO encouraged users to try out FSD for themselves. Musk responded directly to the analyst’s inquiry.
“Hopefully, next month,” Musk wrote. The exchange attracted a lot of attention, with numerous X users sharing their excitement at the idea of FSD being brought to a new country. FSD (Supervised), after all, would likely allow hands-off highway driving, urban navigation, and parking under driver oversight in traffic-heavy cities such as Dubai and Abu Dhabi.
Musk’s comments about FSD’s arrival in the UAE were posted following his visit to the Middle Eastern country. Over the weekend, images were shared online of Musk meeting with UAE Defense Minister, Deputy Prime Minister, and Dubai Crown Prince HH Sheikh Hamdan bin Mohammed. Musk also posted a supportive message about the country, posting “UAE rocks!” on X.
FSD recognition
FSD has been getting quite a lot of support from foreign media outlets. FSD (Supervised) earned high marks from Germany’s largest car magazine, Auto Bild, during a test in Berlin’s challenging urban environment. The demonstration highlighted the system’s ability to handle dense traffic, construction sites, pedestrian crossings, and narrow streets with smooth, confident decision-making.
Journalist Robin Hornig was particularly struck by FSD’s superior perception and tireless attention, stating: “Tesla FSD Supervised sees more than I do. It doesn’t get distracted and never gets tired. I like to think I’m a good driver, but I can’t match this system’s all-around vision. It’s at its best when both work together: my experience and the Tesla’s constant attention.” Only one intervention was needed when the system misread a route, showcasing its maturity while relying on vision-only sensors and over-the-air learning.
News
Tesla quietly flexes FSD’s reliability amid Waymo blackout in San Francisco
“Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post.
Tesla highlighted its Full Self-Driving (Supervised) system’s robustness this week by sharing dashcam footage of a vehicle in FSD navigating pitch-black San Francisco streets during the city’s widespread power outage.
While Waymo’s robotaxis stalled and caused traffic jams, Tesla’s vision-only approach kept operating seamlessly without remote intervention. Elon Musk amplified the clip, highlighting the contrast between the two systems.
Tesla FSD handles total darkness
The @Tesla_AI account posted a video from a Model Y operating on FSD during San Francisco’s blackout. As could be seen in the video, streetlights, traffic signals, and surrounding illumination were completely out, but the vehicle drove confidently and cautiously, just like a proficient human driver.
Musk reposted the clip, adding context to reports of Waymo vehicles struggling in the same conditions. “Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post.
Musk and the Tesla AI team’s posts highlight the idea that FSD operates a lot like any experienced human driver. Since the system does not rely on a variety of sensors and a complicated symphony of factors, vehicles could technically navigate challenging circumstances as they emerge. This definitely seemed to be the case in San Francisco.
Waymo’s blackout struggles
Waymo faced scrutiny after multiple self-driving Jaguar I-PACE taxis stopped functioning during the blackout, blocking lanes, causing traffic jams, and requiring manual retrieval. Videos shared during the power outage showed fleets of Waymo vehicles just stopping in the middle of the road, seemingly confused about what to do when the lights go out.
In a comment, Waymo stated that its vehicles treat nonfunctional signals as four-way stops, but “the sheer scale of the outage led to instances where vehicles remained stationary longer than usual to confirm the state of the affected intersections. This contributed to traffic friction during the height of the congestion.”
A company spokesperson also shared some thoughts about the incidents. “Yesterday’s power outage was a widespread event that caused gridlock across San Francisco, with non-functioning traffic signals and transit disruptions. While the failure of the utility infrastructure was significant, we are committed to ensuring our technology adjusts to traffic flow during such events,” the Waymo spokesperson stated, adding that it is “focused on rapidly integrating the lessons learned from this event, and are committed to earning and maintaining the trust of the communities we serve every day.”