

SpaceX
SpaceX’s Falcon Heavy eyed by Europe/Japan as ULA nails spectacular Delta Heavy launch
According to RussianSpaceWeb, SpaceX’s Falcon Heavy rocket is under serious consideration for launches of major European and Japanese payloads associated with the Lunar Orbital Platform-Gateway (formerly the Deep Space Gateway).
Currently targeting launch readiness in the mid-2020s, those heavy scientific and exploratory government payloads are eyeing Falcon Heavy at the same time as the United Launch Alliance’s (ULA) Delta IV Heavy – the most powerful operational rocket prior to FH’s debut – is busy wrapping up a scientific launch for NASA and prepping for another launch in September for its singular anchor customer, the National Reconnaissance Office (NRO).
https://twitter.com/_TomCross_/status/1028599075002896384
A breathtaking mission to the sun
United Launch Alliance (ULA) has just completed the ninth successful launch of its Delta IV Heavy rocket, originally developed by Boeing in the 1990s and debuted in 2004 before the company’s launch vehicle subsidiary joined forces with Lockheed Martin’s own rocket branch. Delta Heavy’s August 12th mission saw the rocket send a small NASA payload known as Parker Solar Probe (PSP) on a trajectory that will eventually place the craft closer to the Sun than any human-made object before it. In pursuit of a better understanding of how exactly our solar system’s namesake functions and behaves, PSP will also become the fastest object ever created by humans, traveling at an extraordinary 200 km/s (120 mi/s) at the zenith of its deepest periapses (the point at which PSP is closest to the sun).
In a fitting send-off for the small heat-shielded spacecraft, Delta IV Heavy’s launch was a spectacle to behold, with clear skies and the cover of darkness combining to magnify the best of the rocket’s telltale features. Upon ignition of its three massive RS-68 rocket engines, each producing over 700,000 lb-ft of thrust, the rocket is held down for several seconds in a process that famously culminates in what appears to be self-immolation just before liftoff, a consequence of the rocket burning off excess hydrogen fuel expelled during the ignition process. Unlike Falcon 9’s dirtier kerosene-oxygen combustion, Delta Heavy’s hydrogen and oxygen fuel produce a flame that is nearly transparent, aside from a bright orange tint created by materials in each engine’s ablative (read: designed to disintegrate) nozzle.
- Delta IV Heavy opts for ‘medium-well’ just before launch. (Tom Cross)
- The extraordinary might of Delta IV Heavy’s hydrolox-burning RS-68A engines, producing a combined 2.1 million pounds of thrust at liftoff. (Tom Cross)
- Delta IV Heavy takes to the sky on its tenth launch, with Parker Solar Probe in tow. (Tom Cross)
- Delta IV Heavy takes to the sky on its tenth launch, with Parker Solar Probe in tow. (Tom Cross)
While Delta IV Heavy has used one of its other nine successful launches for a NASA payload (a test flight of the Orion capsule), all seven remaining missions were conducted for the USAF (1) and the National Reconnaissance Office (NRO; 6), and all six remaining missions on the rocket’s manifest also happen to be for the NRO. Put simply, Delta IV Heavy would not exist today if the NRO did not have an explicit and unflappable need for the capabilities it offers. The primary downside is cost: DIVH costs at least $350 million and usually more than $400m per launch. Thankfully for ULA, the NRO has very few problems with money, and the agency’s estimated annual budget of $10 billion (2013) is more than half of NASA’s entire budget.
After Falcon Heavy’s successful debut, Delta IV Heavy’s monopoly over heavyweight NRO and USAF payloads is rapidly coming to an end, and both agencies are almost certainly attempting to equally quickly certify SpaceX’s newest rocket for critical national security space (NSS) launches. With that influx of the slightest hint of competition, Delta IV Heavy’s ~$400 million price tag starts to look rather painful in comparison to Falcon Heavy’s cost ceiling of around $150 million, potentially much less in the event that 1-3 of its boosters are recoverable. That competition likely won’t kill Delta IV Heavy, thanks entirely to the anchor support of the NRO, but it most certainly will guarantee that Delta Heavy is retired the moment ULA’s next-gen Vulcan rocket is ready to take over, likely no earlier than 2024.
Outside of the NRO, however, there is a surprising amount of interest in Falcon Heavy for interesting (and heavy) government payloads, particularly with respect to the NASA/ESA/JAXA/Roscosmos cooperative lunar space station, known as the Lunar Orbital Platform-Gateway.
Falcon Heavy enters the mix
The first payload considering Falcon Heavy for launch services is the Japanese Space Agency’s (JAXA) HTV-X, and upgraded version of a spacecraft the country developed to assist in resupplying the International Space Station (ISS). HTV-X is primarily being designed with an ISS-resupply role still at the forefront, but Russianspaceweb recently reported that JAXA is seriously considering the development of a variant of the robotic spacecraft dedicated to resupplying the Lunar Orbital Platform-Gateway (LOPG; and I truly wish I were joking about both the name and acronym).
- JAXA’s first-generation HTV spacecraft on its fourth of nine planned launches, 2013. (NASA)
- JAXA’s first-generation HTV spacecraft on its fourth of nine planned launches, 2013. (NASA)
- The best available visualization of HTV-X, Japan’s upgraded and more affordable ISS resupply spacecraft. (JAXA)
As the name suggests, LOPG is fundamentally a shrunken, upgraded copy of the present-day International Space Station but with its low Earth orbit swapped for an orbit around the Moon. Why, you might ask? It happens that that question is far less sorted at this point than “how”, and there’s a fairly strong argument to be made that NASA is simply attempting to create a low-hanging-fruit destination for the chronically delayed SLS rocket and Orion spacecraft it routinely spends ~20% of its annual budget on. The alternatives to such a crewed orbital outpost are actually landing on the Moon and building a base or dramatically ramping development of foundations needed to enable the first human missions to Mars.
ARTICLE: Cislunar station gets thumbs up, new name in President's budget request – https://t.co/a1XhAPZ7ot
– By Philip Sloss.
(Numerous renders by Nathan Koga, including the epic one below) pic.twitter.com/j0cr2ze7qG
— NSF – NASASpaceflight.com (@NASASpaceflight) March 16, 2018
Regardless of the LOPG’s existential merits, a lot of energy (and money) is currently being funneled into planning and initial hardware development for the lunar station’s various modular segments. JAXA is currently analyzing ways to resupply LOPG and its crew complement with its HTV-X cargo spacecraft, currently targeting its first annual ISS resupply mission by the end of 2021. While JAXA will use its own domestic H-III rocket to launch HTV-X to the ISS, that rocket simply is not powerful enough to place a minimum of ~10,000 kg (22,000 lb) on a trans-lunar insertion (TLI) trajectory. As such, JAXA is examining SpaceX’s Falcon Heavy as a prime (and affordable) option: by recovering both side boosters on SpaceX’s drone ships and sacrificing the rocket’s center core, a 2/3rds-reusable Falcon Heavy should be able to send as much as 20,000 kg to TLI (lunar orbit), according to comments made by CEO Elon Musk.
- Falcon Heavy booster ice peeling away and vaporizing in the fire of the engines. (Photo: Tom Cross)
- Falcon Heavy’s launch debut from Pad 39A, February 2018. (SpaceX)
- Falcon Heavy’s side boosters seconds away from near-simultaneous landings at Landing Zones 1 and 2. (SpaceX)
That impressive performance would also be needed for another LOPG payload, this time for ESA’s 5-6 ton European System Providing Refueling Infrastructure and Telecommunications (ESPRIT) lunar station module. That component is unlikely to reach launch readiness before 2024, but ESA is already considering Falcon Heavy (over its own Ariane 6 rocket) in order to save some of the module’s propellant. Weighing 6 metric tons at most, Falcon Heavy could most likely launch ESPRIT while still recovering all three of its booster stages.
Regardless of the outcomes of those rather far-off launch contracts, it’s clear that some sort of market exists for Falcon Heavy and even more clear that its injection of competition into the stagnant and cornered heavy-lift launch segment is being globally welcomed with open arms.
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!
News
FAA clears SpaceX for Starship Flight 10 after probe into Flight 9 mishap
SpaceX will attempt a Gulf splashdown for Flight 10 once more instead of a tower capture.

The Federal Aviation Administration has closed its review of SpaceX’s Starship Flight 9 mishap, clearing the way for the next launch attempt as soon as August 24.
Flight 9 ended with the loss of both the Super Heavy booster and the upper stage, but regulators accepted SpaceX’s findings that a fuel component failure was the root cause. No public safety concerns were reported from the incident.
Starship recovery lessons
SpaceX noted that Flight 9 marked the first reuse of a Super Heavy booster. Unlike prior attempts, the company did not try a tower “chopsticks” recovery, opting instead for an offshore return that ended in a destructive breakup. The upper stage was also lost over the Indian Ocean.
As per the FAA in its statement, “There are no reports of public injury or damage to public property. The FAA oversaw and accepted the findings of the SpaceX-led investigation. The final mishap report cites the probable root cause for the loss of the Starship vehicle as a failure of a fuel component. SpaceX identified corrective actions to prevent a reoccurrence of the event.”
SpaceX also highlighted that Flight 9’s debris did not harm any wildlife. “SpaceX works with an experienced global response provider to retrieve any debris that may wash up in South Texas and/or Mexico as a result of Starship flight test operations. During the survey of the expected debris field from the booster, there was no evidence of any floating or deceased marine life that would signal booster debris impact harmed animals in the vicinity,” the private space company noted.
Expanding test objectives
To mitigate risks, SpaceX plans to adjust return angles for future flights and conduct additional landing burn tests on Flight 10. SpaceX will attempt a Gulf splashdown for Flight 10 once more, instead of a tower capture, according to a report from the Boston Herald.
The upcoming Starship Flight 10, which will be launching from Starbase in Texas, will also mark SpaceX’s attempt to perform its first payload deployment and an in-space Raptor relight. Despite recent setbacks, which include the last three flights ending with the upper stage experiencing a rapid unscheduled disassembly (RUD), Starship remains central to NASA’s Artemis program, with a variant tapped as the human landing system for Artemis III, the first since the Apollo program.
Standing more than 400 feet tall and generating 16 million pounds of thrust, Starship remains the most powerful rocket flown, though it has yet to complete an orbital mission. The FAA has expanded SpaceX’s license to allow up to 25 Starship flights annually from Texas.
News
Ukraine completes first Starlink direct-to-cell test in Eastern Europe
The trial was announced by the Ministry of Digital Transformation and Kyivstar’s parent company Veon, in a press release.

Ukraine’s largest mobile operator, Kyivstar, has completed its first test of Starlink’s Direct to Cell satellite technology, enabling text messages to be sent directly from 4G smartphones without extra hardware.
The trial was announced by the Ministry of Digital Transformation and Kyivstar’s parent company Veon in a press release.
First Eastern Europe field test
The Zhytomyr region hosted the pilot, where Deputy Prime Minister Mykhailo Fedorov and Kyivstar CEO Oleksandr Komarov exchanged texts and even made a brief video call via Starlink’s satellite link in northern Ukraine’s Zhytomyr region.
Veon stated that the test marked Eastern Europe’s first field trial of the technology, which will allow Kyivstar’s 23 million subscribers to stay connected in areas without cellular coverage. The service will debut in fall 2025 with free text messaging during its testing phase.
“Our partnership with Starlink integrates terrestrial networks with satellite platforms, ensuring that nothing stands between our customers and connectivity – not power outages, deserts, mountains, floods, earthquakes, or even landmines,” Veon CEO Kaan Terzioglu stated.
Starlink in Ukraine
Kyivstar signed its Direct to Cell agreement with Starlink in December 2024, about a year after a major cyberattack disrupted service and caused nearly $100 million in damages, as noted in a report from the Kyiv Independent. Starlink technology has been a pivotal part of Ukraine’s defense against Russia in the ongoing conflict.
“Despite all the challenges of wartime, we continue to develop innovative solutions, because reliable communication under any circumstances and in any location is one of our key priorities. Therefore, this Kyivstar project is an example of effective partnership between the state, business, and technology companies, which opens the way to the future of communication without borders,” Mykhailo Fedorov, First Deputy Prime Minister of Ukraine, said.
News
SpaceX is rolling out a new feature to Starlink that could be a lifesaver
Starlink now has a new Standby Mode that will enable low-speed internet access in the event of an outage.

SpaceX is rolling out a new feature to Starlink that could be a lifesaver in some instances, but more of a luxury for others.
Starlink is the satellite internet service that Elon Musk’s company SpaceX launched several years ago. It has been adopted by many people at their homes, many airlines on their planes, and many maritime companies on their ships.
It has been a great way for customers to relieve themselves of the contracts and hidden fees of traditional internet service providers.
Now, Starlink is rolling out a new service feature on its units called “Standby Mode,” which is part of Pause Mode. The company notified customers of the change in an email:
“We’re reaching out to you to let you know the Pause feature on your plan has been updated. Pause now includes Standby Mode, which comes with unlimited low-speed data for $5.00 per month, perfect for backup connectivity and emergency use. These updates will take effect in 30 days. All of your other plan features remain the same. You are able to cancel your service at any time for no charge.”
SpaceX did not define how fast these “low speeds” will be. However, there are people who have tested the Standby Mode, and they reported speeds of about 500 kilobytes per second.
The mode is ideal for people who might deal with internet or power outages, but still need to have some sort of internet access.
It could also be used as a backup for people who want to stay with their ISP, but would like to have some sort of alternative in case of an outage for any reason.
-
Elon Musk2 weeks ago
Elon Musk confirms Tesla AI6 chip is Project Dojo’s successor
-
News2 weeks ago
Tesla Model Y L reportedly entered mass production in Giga Shanghai
-
Elon Musk2 weeks ago
Tesla CEO Elon Musk details massive FSD update set for September release
-
Cybertruck2 weeks ago
Tesla’s new upgrade makes the Cybertruck extra-terrestrial
-
News2 weeks ago
Elon Musk reaffirms Tesla Semi mass production in 2026
-
News2 weeks ago
Elon Musk explains why Tesla stepped back from Project Dojo
-
News2 weeks ago
Tesla Model 3 filings in China show interesting hardware addition
-
News2 weeks ago
Tesla Model Y L’s impressive specs surface in China’s recent MIIT filing