

SpaceX
SpaceX job posts hint at building satellite constellations for US military
Published within the last week, unusual SpaceX job postings have begun to combine a range of topics unusual for the company, indicating some level of internal interest in entering into an entirely new industry and mode of operations.
Judging from the job descriptions, SpaceX is looking to hire engineers familiar with integrating third-party payloads onto in-house satellite buses, and they are primarily interested in engineers with Top Secret security clearances.
https://twitter.com/collinkrum/status/1002425606401736704
Given the subtlety of the relevant job postings and the apparent need for high-level security clearances to become involved, it’s extremely difficult to figure out what exactly SpaceX’s goals are. Still, they contain just enough detail to point in the direction of several obvious explanations. These revolve around one industry in particular: satellite operations and sales to or for third parties.
To some extent, these job listings are to be expected: SpaceX has extensive experience building spacecraft (Falcon 9 upper stages and Dragon) explicitly intended for internal use and operations only. Instead, what is surprising about these job listings is the presence of repeated references to “customer payload[s]” in the context of “satellite mission design”, “SpaceX-developed satellite constellations and payload missions”, the “simulation of remote sensing payloads and constellations”, and a need for “on-orbit commissioning” or “activation”.
Put simply, there is no obvious explanation for why SpaceX would need any of those things, at least in the context of the company’s publicly-known activities and business interests. Taken individually, they might be explained by – as described in the same listings – “[SpaceX’s expanding] classified mission manifest”, as it’s well-known that SpaceX is in the process of certifying Falcon 9 and Falcon Heavy to launch all practicable Air Force (USAF) and National Reconnaissance Office (NRO) payloads. Those payloads often need to be placed in high-energy orbits that rely on extended upper stage coasts between orbit-raising maneuvers, essentially requiring modifications to Falcon 9’s upper stage such that it becomes a sort of ad-hoc, short-lived satellite.
- SpaceX’s first Falcon Heavy launch also happened to be a strategic and successful test of Falcon upper stage coast capabilities. (SpaceX)
- SpaceX’s first two Starlink prototype satellites are pictured here before their inaugural launch, showing off a thoroughly utilitarian bus and several advanced components. (SpaceX)
Starlink spinoffs
However, in all (conceivable) cases where SpaceX might launch a highly-classified payload for a government customer, the dynamic is still precisely that – launch provider (SpaceX) and customer (NRO/USAF/etc). Just like FedEx or UPS have no ownership of or relationship with the goods they transport, satellite launch providers are simply delivering a (very expensive, fragile, and irreplaceable) payload from Point A (the ground) to Point B (orbit). When UPS ships a new smartphone from the manufacturer to the customer, they most certainly do not perform an “in-house commissioning” – if the customer needs help setting up their new phone, they go to the manufacturer or service provider (cell carrier).
In the same way, satellite commissioning is a generally necessary process where the satellite manufacturer – rarely the actual operator or service provider – raises or fine-tunes the expensive spacecraft’s orbit and verifies that all systems and payloads are functioning as intended – only after that process is complete does the manufacturer finally ‘hand off’ the satellite to the customer that paid for it. In some cases, the manufacturer continues to maintain or at least monitor the satellite in the background as the owner serves its own customers, much like how military airplane manufacturers are typically contracted to maintain or support those planes even after final delivery.
Judging from the need for top-secret security clearance in nearly all of these new job postings, SpaceX clearly has a very particular sort of customer in mind. Be it DARPA, NRO, the USAF, or some totally unknown government actor, one or several of the above entities have expressed explicit interest in coopting SpaceX’s newfound status as a prospective dirt-cheap-satellite manufacturer. If that were not the case, SpaceX would not be keen to publish 5+ engineering job postings with top-secret clearance as an explicit prerequisite.
Project Blackjack
Ultimately, it’s undeniable that the prospect of a completed vertically-integrated launch and satellite service provider could be so alluring that entities like the NRO, USAF, or DARPA simply could not pass up the opportunity to at least give it a try. From a purely speculative perspective, the services and processes SpaceX seems to be in the middle of developing are an almost perfect fit with DARPA’s (Defense Advanced Research Projects Agency) brand new Blackjack program. Perfectly summarized in September by Space News reporter Sandra Erwin,
“[DARPA] wants to buy small satellites from commercial vendors, equip them with military sensor payloads and deploy a small constellation in low-Earth orbit to see how they perform in real military operations.”
DARPA awarded a $1.5M contract to smallsat manufacturer and operator Blue Canyon on in October 2018, small relative to the program’s roughly $118M budget. DARPA has made clear that it plans to finalize multiple contracts with different prospective satellite designers and operators in order to ensure a competitive environment, fuel growth in a fairly new industry, and pave the way for the final procurement of an experimental constellation of 20 satellites by 2021. If successful, it could completely change the way the entire US government procures national security-related satellites, offering a far faster, cheaper, and more flexible route to set up unique capabilities.
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!
News
T-Mobile’s Starlink cellular doubles as free 5G trial for rival users

T-Mobile’s Starlink cellular is set to deliver satellite connectivity to users on rival carriers. The Starlink cellular beta program could double as a free trial for T-Mobile’s 5G network, blending space-based innovation with a strategic push to attract new customers. T-Mobile’s Starlink cellular service will launch soon, aiming to showcase both Starlink’s capabilities and T-Mobile’s terrestrial network.
“The wait is almost over,” T-Mobile announced in a Wednesday email to those who signed up for free beta access to the cellular Starlink service. “Our phone partners have been hustling to get more phones satellite-optimized, and in just a couple weeks, you’ll be invited to the beta.”
The Starlink cellular program includes “50GB of high-speed data and unlimited texts,” offering a robust test of T-Mobile’s 5G network alongside Starlink’s satellite connectivity. This package mirrors T-Mobile’s existing three-month free trial, which provides 50GB of premium mobile data via eSIM, allowing users to try T-Mobile without switching from their current provider.
Starlink cellular’s availability to rival carrier users via eSIM is a key draw, enabling seamless access to T-Mobile’s network and Starlink’s satellite service. T-Mobile sweetens the deal with perks like “$5 movie tickets, 25% off concert tickets, travel discounts, and T-Mobile Tuesdays for free stuff and great perks every week.” These incentives underscore T-Mobile’s strategy to convert beta testers into full-time customers.
Last week, T-Mobile reduced Starlink cellular’s price to $10 per month for both its customers and those on rival carriers, enhancing affordability. The company’s exclusive U.S. partnership with SpaceX gives it a head start in satellite connectivity. Meanwhile, competitors AT&T and Verizon, collaborating with AST SpaceMobile, may lag by a year or two due to fewer satellites.
By offering rival carrier users a free trial of its 5G network through the Starlink cellular beta program, T-Mobile positions itself as a leader in terrestrial and satellite connectivity. The initiative highlights the potential of SpaceX’s Starlink and leverages T-Mobile’s network strengths to capture a broader market, setting the stage for a new era of hybrid connectivity.
News
SpaceX set to launch Axiom’s mission for diabetes research on the ISS
Axiom’s Ax-4 will test CGMs & insulin stability in microgravity—potentially reshaping diabetes care for Earth & future astronauts.

Axiom Space’s Ax-4 mission is set to launch on a SpaceX Falcon 9 rocket. Ax-4 will advance diabetes research in microgravity, marking a milestone for astronaut health.
Axiom Space’s fourth crewed mission is scheduled to launch with SpaceX on May 29 from NASA’s Kennedy Space Center in Florida. The Ax-4 mission will carry a diverse crew and a record-breaking scientific payload to the International Space Station (ISS).
The Ax-4 crew is led by Axiom’s Peggy Whitson and includes Shubhanshu Shukla from India, Sławosz Uznański from the European Space Agency, and Tibor Kapu from Hungary. The mission represents firsts for India, Hungary, and Poland, with Uznański being Poland’s first astronaut in over 40 years.
Ax-4 will conduct nearly 60 science investigations from 31 countries during its two-week ISS stay. A key focus is the “Suite Ride” initiative, a collaboration with Burjeel Holdings to study diabetes management in microgravity.
“The effort marks a significant milestone in the long-term goal of supporting future astronauts with insulin-dependent diabetes (IDDM), a condition historically deemed disqualifying for spaceflight,” Axiom noted. The mission will test Continuous Glucose Monitors (CGMs) and insulin stability to assess their performance in space.
Axiom explained that testing the behavior of CGMs and insulin delivery technologies in microgravity and observing circadian rhythm disruption could help diabetes experts understand how CGMs and insulin pens can improve diabetes monitoring and care in remote or underserved areas on Earth. The research could benefit diabetes management in isolated regions like oil rigs or rural areas.
The mission’s findings on insulin exposure and CGM performance could pave the way for astronauts with diabetes to safely participate in spaceflight. As Axiom and SpaceX push boundaries, Ax-4’s diabetes research underscores the potential for space-based innovations to transform healthcare on Earth and beyond.
Elon Musk
EU considers SES to augment Starlink services
The EU considers funding SES to support Starlink. With MEO satellites already serving NATO, SES could be key in Europe’s space autonomy push.

European satellite company SES is negotiating with the European Union (EU) and other governments to complement SpaceX’s Starlink, as Europe seeks home-grown space-based communication solutions. The talks aim to bolster regional resilience amid growing concerns over reliance on foreign providers.
In March, the European Commission contacted SES and France’s Eutelsat to assess their potential role if American-based Starlink access for Ukraine was disrupted. The European Commission proposed funding EU-based satellite operators to support Kyiv. Ukraine is considering alternatives to Starlink over concerns about Elon Musk’s reliability.
Arthur De Liedekerke of Rasmussen Global warned, “Elon Musk is, in fact, the guardian of Ukraine’s connectivity on the battlefield. And that’s a strategic vulnerability.” However, SpaceX’s Starlink constellation is leagues ahead of any competition in the EU.
“Now the discussions are much more strategic in nature. They’re much more mid-term, long-term. And what we’re seeing is all of the European governments are serious about increasing their defense spending. There are alternatives, not to completely replace Starlink, that’s not possible, but to augment and complement Starlink,” SES CEO Adel Al-Saleh told Reuters.
SES operates about 70 satellites, including over 20 medium Earth orbit (MEO) units at 8,000 km. The company provides high-speed internet for government, military, and underserved areas. It plans to expand its MEO fleet to 100, enhancing secure communications for NATO and the Pentagon.
“The most significant demand (for us) is European nations investing in space, much more than what they did before,” Al-Saleh said.
Competition from Starlink, Amazon’s Kuiper, and China’s SpaceSail, with their extensive low-Earth orbit constellations, underscores Europe’s push for independence.
“It is not right to say they just want to avoid Starlink or the Chinese. They want to avoid being dependent on one or two providers. They want to have flexibility,” Al-Saleh noted.
SES’s discussions reflect Europe’s strategic shift toward diversified satellite networks, balancing reliance on Starlink with regional capabilities. As governments ramp up defense spending, SES aims to play a pivotal role in complementing global providers, ensuring robust connectivity for military and civilian needs across the continent.
-
News2 weeks ago
Tesla’s Hollywood Diner is finally getting close to opening
-
Elon Musk2 weeks ago
Tesla doubles down on Robotaxi launch date, putting a big bet on its timeline
-
News1 week ago
Tesla is trying to make a statement with its Q2 delivery numbers
-
Investor's Corner2 weeks ago
LIVE BLOG: Tesla (TSLA) Q1 2025 Company Update and earnings call
-
News6 days ago
NY Democrats are taking aim at Tesla direct sales licenses in New York
-
Elon Musk2 weeks ago
Tesla Semi fleet from Frito-Lay gets more charging at Bakersfield factory
-
Investor's Corner2 weeks ago
Tesla (TSLA) releases first quarter 2025 earnings results
-
News2 weeks ago
Tesla Cybercab no longer using chase vehicles in Giga Texas