Connect with us

News

DeepSpace: China tests SpaceX-reminiscent grid fins after iSpace snags orbital milestone

On July 25th, iSpace became the first Chinese startup to reach orbit. On July 26th, China performed the first flight test of landing-focused grid fins on a Long March 2C rocket. (iSpace/CASC)

Published

on

Eric Ralph · August 1st, 2019

Welcome to the latest edition of DeepSpace! Each week, Teslarati space reporter Eric Ralph hand-crafts this newsletter to give you a breakdown of what’s happening in the space industry and what you need to know.

Although the accomplishments aren’t quite as flashy as a launch to the Moon, the last week has featured a number of interesting developments and significant milestones from both the state-run and quasi-commercial wings of Chinese spaceflight.

In the commercial realm, Chinese startup iSpace became the country’s first commercial entity to successfully reach orbit, achieving the feat with a three-stage solid rocket called Hyperbola 1.

One day later, state-owned Chinese company China Aerospace Science and Technology Corporation (CASC) completed its 50th successful Long March 2 rocket launch on a relatively routine government spy satellite mission. Unique was the fact that the rocket marked the first flight test of grid fins – extremely similar to those used on SpaceX’s Falcon 9 – on a Long March rocket.

Advertisement

The march to orbit

  • In 2019 alone, three Chinese spaceflight startups have made their first orbital launch attempts and more tries are planned in the second half of the year. OneSpace and LandSpace both got close but ended up suffering partial failures that cut their attempts short before safely reaching orbit.
  • Enter iSpace: one of dozens of startups in a burgeoning Chinese commercial spaceflight industry, the company’s three-stage solid rocket – named Hyperbola 1 – became the first Chinese startup-launched rocket to successfully reach orbit on July 25th.
    • Although a large amount of the hardware may well have been procured (or licensed) wholesale from CASC, the success still signifies the start of a new alternative to government launches for companies (and perhaps government agencies) seeking to launch smaller satellites.
  • Hyperbola 1 stands about 21m (68 ft) tall, is 1.4m (4.6 ft) in diameter at its widest point, and weighs about 31 tons (68,000 lb) when fully fueled. Three solid rocket stages are followed by an extremely small fourth stage meant to circularize the payload(s) in low Earth orbit (LEO).
    • The rocket is capable of launching as much as 260 kg (570 lb) to a 500 km (310 mi) sun-synchronous orbit (SSO).
  • For iSpace, Hyperbola 1 is more of a stopgap measure as the company works to develop Hyperbola 2, a significantly larger launch vehicle meant to feature a reusable booster and internally-developed liquid rocket engines.
  • Ultimately, Hyperbola 1 reaching orbit is an exciting milestone, but it will be far more significant when a Chinese startup reaches orbit with a launch vehicle it has truly designed and built itself. A number of companies aim to do just that next year (2020).

The sincerest form of flattery…

  • A day later (July 26th) and approximately 1000 miles (1600 km) to the southeast, state-run corporation CASC was preparing for a routine launch of its Long March 2C rocket, carrying a trio of relatively small spacecraft for a government spy satellite constellation.
    • Technically known as YW-30 Group-5, the launch was a routine success that just so happened to be the Long March 2 family’s 50th successful launch in more than 35 years. The family has only suffered one in-flight failure.
    • Long March 2C is a two-stage rocket that stands 42m (138 ft) tall (shorter than Falcon 9’s first stage), 3.35m (11 ft) wide, and weighs ~233 tons (514,000 lb) fully fueled. The 2C variant is capable of launching ~3850 kg (8500 lb) into LEO and more than 1250 kg (2750 lb) into geostationary transfer orbit (GTO).
  • Although the rocket’s 50th launch success milestone is worth recognizing, this particular launch wound up drawing a significantly greater amount of attention for an entirely different reason: attached to the outside of the Long March 2C’s booster interstage was a quartet of immediately familiar grid fins.
  • SpaceX has grown famous in the last five or so years for its spectacularly successful Falcon 9 recovery and reusability, aided in no small part by grid fins used by the booster to retain aerodynamic control authority during its hypersonic jaunts through the atmosphere.
    • The appearance of grid fins on a Chinese rocket – looking undeniably similar to SpaceX’s first-generation aluminum fins – raised some (moderately xenophobic) ire in the space community, with people falling back on the stereotype of the perceived willingness of Chinese people to flagrantly ‘copy’ ideas.
    • Both the stereotype and the grid fin-stoked ire are arguably undeserved. SpaceX did not invent grid fins, nor did it invent the concept of using grid fins to guide suborbital projectiles.
    • In fact, CEO Elon Musk would almost certainly be happy to see someone – anyone! – blatantly copy SpaceX’s approach to reusability. A blatant copy, while not exactly worthy of pride, is still a major improvement over companies sticking their heads in the sand and tacitly choosing insolvency and commercial irrelevance rather than admit that they were wrong and SpaceX was right.
  • According to CASC, this mission’s grid fins were included to flight-test their ability to more carefully guide the booster’s return to Earth. China infamously takes a… lax… approach to range safety, allowing spent boosters and fairings to haphazardly crash into inhabited areas, often containing remnants of their sometimes toxic propellant.
    • Indeed, this particular booster did appear to crash in an uninhabited valley, be it thanks to those experimental grid fins or pure chance
    • However, aside from not crashing large objects in populated areas, CASC and China have plans to develop a Long March 6 rocket with a reusable booster that will use the same recovery methods as Falcon 9. That rocket could fly as early as 2021 and July 26th’s grid fin test is an obvious sign that work is ongoing.
    • If China manages to develop and launch a partially reusable rocket by 2021, they will be miles (and years) ahead of its space agency peers (NASA, ESA, CNES) and companies like ULA and Arianespace.

Thanks for being a Teslarati Reader! Stay tuned for next week’s issue of DeepSpace.

– Eric

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk says Tesla will take Safety Drivers out of Robotaxi: here’s when

“The safety driver is just there for the first few months to be extra safe. Should be no safety driver by end of year.”

Published

on

Credit: Joe Tegtmeyer | X

Tesla CEO Elon Musk said today that the company plans to completely eliminate Safety Drivers from its Robotaxi fleet, which differs from the Safety Monitors it uses.

Tesla’s Robotaxi platform utilizes employees in the front passenger seat during city rides in Austin and the driver’s seat of the vehicles during highway operations in Austin, as well as during all rides in the Bay Area.

Tesla adjusts Robotaxi safety monitor strategy in Austin with new service area

Musk said the presence of a Safety Driver “is just there for the first few months to be extra safe,” but there are plans to remove them in an effort to remove the crutches the company uses during the early stages of Robotaxi.

The CEO then outlined a timeframe for when it would remove the presence of an employee in the driver’s seat in both Austin and the Bay Area. He said there “should be no safety driver by end of year.”

Advertisement

Having a Safety Driver or Monitor has been a major point of criticism from Robotaxi skeptics and Tesla critics.

However, Tesla has maintained that its priority in the early stages is the safety of riders, which will keep things running; even a single negative incident could derail self-driving efforts as a whole, including those outside of the company.

Advertisement

Tesla executives have said their attitude toward safety is “paranoid,” but for good reason: an accident could set back the progress that it and many other companies, including rivals like Waymo, have made in the past few years.

For now, it might be a point of criticism for some, but it’s smart in the near term. Musk plans for Tesla to have Robotaxi operating for half of the U.S. population by the end of the year as well, so it will be interesting to see if it can maintain these timelines.

Continue Reading

News

Tesla is already giving Robotaxi privileges hours after opening public app

This morning, Tesla launched the app in the Apple Store, giving iOS users the ability to download and join a waitlist in hopes of gaining access.

Published

on

tesla robotaxi app on phone
Credit: Tesla

Tesla is already giving Robotaxi privileges to those who downloaded the app and joined its waitlist just hours after it launched in the United States.

As the Robotaxi platform has been operating in Austin for several months, Tesla is now allowing the general public to download its app and call for a driverless ride in the city.

Tesla Robotaxi makes major expansion with official public app launch

The company previously sent invitations to select media outlets and Tesla influencers, seeking initial feedback on the performance of the Robotaxi platform.

There have been positive reviews, but, as with any Beta program, some mishaps have also occurred, although none have been significant.

Advertisement

As of the writing of this article, the City of Austin only lists one incident involving a Tesla Robotaxi, noting it as a “Safety Concern,” but not an accident or collision.

This morning, Tesla launched the app in the Apple Store, giving iOS users the ability to download and join a waitlist in hopes of gaining access.

Tesla is already granting Robotaxi access to several of those who have downloaded the app and gotten on the waitlist early:

Advertisement

With the launch of the public app, we were not too sure how soon Tesla would be able to initiate bringing more riders into the Robotaxi program. The immediate admittance for some riders just hours after the launch is a big positive and is surely a sign of strength for Tesla and its Robotaxi program.

What many will look for moving forward is the expansion of the geofence, which does not seem like a problem, as Tesla has already managed to do this on three occasions. The most recent expansion has expanded the service area to approximately 190 square miles.

People will also look for evidence of fleet expansion, a concern that has been a concern for many, especially since Tesla has not been completely transparent about it. They have revealed a recent service fleet growth of 50 percent, but there has been no specific number of vehicles mentioned.

Tesla reveals it has expanded its Robotaxi fleet in Austin

Advertisement
Continue Reading

News

Tesla explains why Robotaxis now have safety monitors in the driver’s seat

The update to Austin’s safety monitors became a point of interest among Tesla watchers on social media.

Published

on

Credit: Tesla

Tesla has provided an explanation about the presence of safety monitors in the driver’s seat of its autonomous Robotaxi units.

The autonomous ride-hailing service is currently being deployed in Austin and the Bay Area, with more cities across the United States expected to gain access to the service later this year.

Safety Monitors

When Tesla launched its initial Robotaxi program in Austin, the company made headlines for operating vehicles without a human in the driver’s seat. Even with this setup, however, Tesla still had safety monitors in the passenger seat of the Robotaxis. The safety monitors, which do not interact with passengers, have been observed to report issues and other behaviors from the autonomous vehicles in real time. 

Safety monitors on the driver’s seat were also employed in the service’s Bay Area rollout, though numerous members of the EV community speculated that this was likely done to meet regulations in California. However, with the expansion of the Austin geofence, riders in Tesla’s Robotaxis observed that the safety monitors in the city have been moved to the driver’s seat as well.

Tesla’s explanation

The update to Austin’s safety monitors became a point of interest among Tesla watchers on social media. Longtime FSD tester Whole Mars Catalog, for one, speculated that the move might be due to Texas’ new regulations for autonomous vehicles, which took effect recently. Interestingly enough, the official Tesla Robotaxi account on X responded to the FSD tester, providing an explanation behind the safety monitor’s move to the driver’s seat. 

Advertisement

“Safety monitors are only in the driver’s seat for trips that involve highway driving, as a self-imposed cautious first step toward expanding to highways,” the Tesla Robotaxi account noted.

Tesla has been extremely cautious with its autonomous driving program, particularly with the rollout of its Robotaxi service, which use Unsupervised FSD. This is quite understandable considering the negative media slant that Tesla is consistently subjected to, which could very well result in minute incidents or mistakes by Robotaxis being blown out of proportion.

Continue Reading

Trending