Connect with us

Energy

For HyperSciences, geothermal energy builds a path to space

Published

on

These days, it seems anyone wanting to launch rockets will inevitably be compared to Elon Musk and Jeff Bezos, especially if rocket launching isn’t the only business interest on the agenda. Musk has Tesla plus SpaceX, and Bezos has Amazon plus Blue Origin. Now, meet Mark Russell, a disciple of Bezos and rocket engineer who founded HyperSciences, a drilling company that uses aerospace technology to both quickly extract underground geothermal energy and put payloads into orbit at low cost.

The idea of leveraging Earth’s geothermal energy is not a new concept, but the expense and time required to reach the depth needed have been prohibitively expensive. That’s where HyperSciences comes in.

Russell and his team have developed a low-cost, multi-purpose projectile called the HyperDrone that can accelerate to velocities over five times the speed of sound and pulverize hard rock via their HyperDrill. This will enable tunneling speeds that are 5-10 times quicker than conventional methods, and more importantly, it opens up significant market viability in other industries that could benefit, namely when that acceleration is pointed skyward. NASA has already recognized this potential and is a current investor and major partner of HyperSciences.

Bringing accessible, affordable, and true green energy to the international arena is onely one component in Russell’s overarching goal in life. In a way reminiscent of the founder of another famous digging enterprise, The Boring Company, HyperSciences’ founder has both roots in space exploration and a long-term vision for a paradigm shift in space launch capabilities using the same basic technology employed in his digging operations. In fact, launching projectiles up was what inspired him to launch them down deep into the ground in the first place.

“I would not have left ‘conventional’ aerospace unless there was a path forward for spaceflight,” Russell told me in a conversation we had about his vision for his company’s inventions beyond Earth’s atmosphere. He was referring to his decision to leave Blue Origin after he’d led their crew capsule and vertical takeoff and landing vehicle development to found HyperSciences. I’d heard that Russell had history with the Bezos-led rocket company, but as a lifelong space nerd, I was very excited to hear the extent of his background in aerospace and how it tied into just about everything about his drilling company.

“I was the black sheep of the family that went into the aerospace arena instead of into mining,” he told me, jokingly, before reminiscing about his amateur astronomy hobby and desire to be an astronaut in his younger days. Russell is the third generation of a family of successful miners from Idaho.

Advertisement

It is Rocket Science

The future HyperSciences founder obtained a master’s degree in Aero Astro Engineering from Stanford University before spending some engineering time at Boeing first, then Kistler Aerospace, where he worked with a man who would eventually become Blue Origin’s first president, Rob Meyerson. Russell made the transition to Jeff Bezos’s space venture himself for a time, but as the company moved more in the direction of becoming a traditional launch provider, he made the decision to circle back around to his family mining days where he’d been considering some underground-type space industry ideas that needed more attention to flesh out.

The result of that return home would eventually lead to the invention of the HyperDrill and the step-change Russell was looking for to be able to turn his attention skyward again. “My brother and I drilled the deepest holes in America right after I left Blue Origin, and it all seemed like rocket science to me,” he recalled.

So, how does a drill transform into a rocket? While the technology itself is the product of very innovative and intelligent minds, the concept overall is simple. A projectile (or rocket payload, rather) is loaded into a long tube that’s been drilled underground, and then fuel is ignited in the bottom of the tube to propel it at hypersonic speed towards space, a second transfer stage possibly being implemented for orbital entry. The company calls the actual launching device the HyperCore Engine. By essentially separating the fuel and the payload of a rocket, the process of putting things into orbit becomes cheaper, safer, and achievable at a much faster rate of launch than anything even being planned by the likes of SpaceX and Blue Origin.

This kind of technology proposition gained NASA’s interest, and HyperSciences has since won a Phase I innovation award for from the agency, the testing for which was successfully completed at Spaceport America in New Mexico at the end of January this year. With this achievement under their belt, Russell’s long-time spaceflight dreams are really starting to take shape.

Looking Beyond Earth

Tying the team’s mining and space technology ambitions neatly together, Russell also told me that his time at Blue Origin contributed more than just direct experience with spaceflight development to his hypersonic launch ambitions. Bezos’s “test early, test often” philosophy was directly relevant to a technology involving speeds 3-6 times the speed of sound – frequent flight testing is a must.

“At this point I realized, you really have to change the paradigm, and you need to test an awful lot,” he explained. “I thought to myself, if you want to practice a lot in hypersonics, what you want to do is find an industry that needs this.” With HyperSciences established and making great progress, Russell’s plan looks to have worked just as he’d imagined. “Every 15 seconds, we’re firing something at hypersonic speeds. Nobody does that. NASA doesn’t do it. Boeing doesn’t do it. But we do it.”

Advertisement

There was yet another aspect to Russell’s plan in developing his technology that I thought was pretty exciting – crowdsourced investment. Unlike SpaceX and Blue Origin where investment isn’t really accessible to day-to-day citizens wanting to be a part of the “next big thing”, HyperSciences’ latest funding round is being hosted by SeedInvest. This approach provides a real ownership opportunity for pretty much anyone excited about things like aerospace and clean energy, and it’s open until March 22, 2019.

“Every 15 seconds, we’re firing something at hypersonic speeds. Nobody does that. NASA doesn’t do it. Boeing doesn’t do it. But we do it.”

As a native space nerd, I also had to prod Russell about taking HyperSciences’ tech to Mars – did he see a place for it there, whether it be for underground geothermal-type energy hunting or habitat digging? Turns out, he was several steps ahead of me. “I think the next bit of space exploration really does need to drill holes,” he said, acknowledging my sentiments about taking the tech off-planet. “In our patents, we have some applications that aren’t terrestrial.” How’s that for forward thinking?

“Hypersonics is not just about space. It’s a brand new way – a brand new engine,” Russell emphasized to me.

The disruptions already caused by Elon Musk in the same arenas HyperSciences is aiming for have made so many inroads where strict boundaries once stood, and it’s very exciting to see another space-driven company come along and want to keep pushing those boundaries into another phase of development all together. Visiting HyperSciences’ SeedInvest page is a great place to learn more details about the company’s plans and the benefits investors can gain by being a part of their future-forward technology.

The video below provides some exciting visuals and information surrounding the aerospace applications for HyperSciences’ technology, as demonstrated for their NASA Phase I funding award.

Advertisement

Accidental computer geek, fascinated by most history and the multiplanetary future on its way. Quite keen on the democratization of space. | It's pronounced day-sha, but I answer to almost any variation thereof.

Energy

Tesla recalls Powerwall 2 units in Australia

Published

on

(Credit: nathanwoodgc /Instagram)

Tesla will recall Powerwall 2 units in Australia after a handful of property owners reported fires that caused “minor property damage.” The fires were attributed to cells used by Tesla in the Powerwall 2.

Tesla Powerwall is a battery storage unit that retains energy from solar panels and is used by homeowners and businesses to maintain power in the event of an outage. It also helps alleviate the need to rely on the grid, which can help stabilize power locally.

Powerwall owners can also enroll in the Virtual Power Plant (VPP) program, which allows them to sell energy back to the grid, helping to reduce energy bills. Tesla revealed last year that over 100,000 Powerwalls were participating in the program.

Tesla announces 100k Powerwalls are participating in Virtual Power Plants

The Australia Competition and Consumer Commission said in a filing that it received several reports from owners of fires that led to minor damage. The Australian government agency did not disclose the number of units impacted by the recall.

The issue is related to the cells, which Tesla sources from a third-party company.

Anyone whose Powerwall 2 unit is impacted by the recall will be notified through the Tesla app, the company said.

Continue Reading

Energy

Tesla’s new Megablock system can power 400,000 homes in under a month

Tesla also unveiled the Megapack 3, the latest iteration of its flagship utility scale battery.

Published

on

Credit: Tesla

Tesla has unveiled the Megablock and Megapack 3, the latest additions to its industrial-scale battery storage solution lineup. 

The products highlight Tesla Energy’s growing role in the company, as well as the division’s growing efforts to provide sustainable energy solutions for industrial-scale applications.

Megablock targets speed and scale

During the “Las Megas” event in Las Vegas, Tesla launched Megablock, a pre-engineered medium-voltage block designed to integrate Megapack 3 units in a plug-and-play system. Capable of 20 MWh AC with a 25-year life cycle and more than 10,000 cycles, the Megablock could achieve 91% round-trip efficiency at medium voltage, inclusive of auxiliary loads.

Tesla emphasized that Megablock can be installed 23% faster with up to 40% lower construction costs. The platform eliminates above-ground cabling through a new flexible busbar assembly and delivers site-level density of 248 MWh per acre. With Megablock, Tesla is also aiming to commission 1 GWh in just 20 business days, or enough to power 400,000 homes in less than a month. 

“With Megablock, we are targeting to commission 1 GWh in 20 business days, which is the equivalent of bringing power to 400,000 homes in less than a month. It’s crazy. How are we planning to do that? Like most things at Tesla, we are ruthlessly attacking every opportunity to save our customers time, simplify the process, remove steps, (and) automate as much as we can,” the company said. 

Advertisement

Megapack 3 is all about simplicity

The Megapack 3 is Tesla’s next-generation utility battery, designed with a simplified architecture that cuts 78% of connections compared to the previous version. Its thermal bay is drastically simplified, and it uses a Model Y heat pump on steroids. The battery weighs about 86,000 pounds and holds 5 MWh of usable AC energy. Tesla engineers incorporated a larger battery module and a new 2.8-liter LFP cell co-developed with the company’s cell team.

The Megapack 3 is designed for serviceability, and it features easier front access and no roof penetrations. About 75% of Megapack 3’s total mass is battery cells, with individual modules weighing as much as a Cybertruck. It’s also tough, with an ambient operating temperature range from -40C to 60C. This should allow the Megapack 3 to operate optimally from the coldest to the hottest regions on the planet.

Production is set to begin at Tesla’s Houston Megafactory in late 2026, with planned capacity of 50 GWh per year. Additional supply will come from Tesla’s 7 GWh LFP facility in Nevada, which is expected to open in 2025, as well as with third-party partners.

Continue Reading

Energy

Tesla Energy is the world’s top global battery storage system provider again

Tesla Energy captured 15% of the battery storage segment’s global market share in 2024.

Published

on

Credit: Tesla

Tesla Energy held its top position in the global battery energy storage system (BESS) integrator market for the second consecutive year, capturing 15% of global market share in 2024, as per Wood Mackenzie’s latest rankings.

Tesla Energy’s lead, however, is shrinking, as Chinese competitors like Sungrow are steadily increasing their global footprint, particularly in European markets.

Tesla Energy dominates in North America, but its lead is narrowing globally

Tesla Energy retained its leadership in the North American market with a commanding 39% share in 2024. Sungrow, though still ranked second in the region, saw its share drop from 17% to 10%. Powin took third place, even if the company itself filed for bankruptcy earlier this year, as noted in a Solar Power World report. 

On the global stage, Tesla Energy’s lead over Sungrow shrank from four points in 2023 to just one in 2024, indicating intensifying competition. Chinese firm CRRC came in third worldwide with an 8% share.

Wood Mackenzie ranked vendors based on MWh shipments with recognized revenue in 2024. According to analyst Kevin Shang, “Competition among established BESS integrators remains incredibly intense. Seven of the top 10 vendors last year struggled to expand their market share, remaining either unchanged or declining.”

Advertisement

Chinese integrators surge in Europe, falter in U.S.

China’s influence on the BESS market continues to grow, with seven of the global top 10 BESS integrators now headquartered in the country. Chinese companies saw a 67% year-over-year increase in European market share, and four of the top 10 BESS vendors in Europe are now based in China. In contrast, Chinese companies’ market share in North America dropped more than 30%, from 23% to 16% amid Tesla Energy’s momentum and the Trump administration’s policies.

Wood Mackenzie noted that success in the global BESS space will hinge on companies’ ability to adapt to divergent regulations and geopolitical headwinds. “The global BESS integrator landscape is becoming increasingly complex, with regional trade policies and geopolitical tensions reshaping competitive dynamics,” Shang noted, pointing to Tesla’s maintained lead and the rapid ascent of Chinese rivals as signs of a shifting industry balance.

“While Tesla maintains its global leadership, the rapid rise of Chinese integrators in Europe and their dominance in emerging markets like the Middle East signals a fundamental shift in the industry. Success will increasingly depend on companies’ ability to navigate diverse regulatory environments, adapt to local market requirements, and maintain competitive cost structures across multiple regions,” the analyst added.

Continue Reading

Trending