Connect with us

Energy

For HyperSciences, geothermal energy builds a path to space

Published

on

These days, it seems anyone wanting to launch rockets will inevitably be compared to Elon Musk and Jeff Bezos, especially if rocket launching isn’t the only business interest on the agenda. Musk has Tesla plus SpaceX, and Bezos has Amazon plus Blue Origin. Now, meet Mark Russell, a disciple of Bezos and rocket engineer who founded HyperSciences, a drilling company that uses aerospace technology to both quickly extract underground geothermal energy and put payloads into orbit at low cost.

The idea of leveraging Earth’s geothermal energy is not a new concept, but the expense and time required to reach the depth needed have been prohibitively expensive. That’s where HyperSciences comes in.

Russell and his team have developed a low-cost, multi-purpose projectile called the HyperDrone that can accelerate to velocities over five times the speed of sound and pulverize hard rock via their HyperDrill. This will enable tunneling speeds that are 5-10 times quicker than conventional methods, and more importantly, it opens up significant market viability in other industries that could benefit, namely when that acceleration is pointed skyward. NASA has already recognized this potential and is a current investor and major partner of HyperSciences.

Bringing accessible, affordable, and true green energy to the international arena is onely one component in Russell’s overarching goal in life. In a way reminiscent of the founder of another famous digging enterprise, The Boring Company, HyperSciences’ founder has both roots in space exploration and a long-term vision for a paradigm shift in space launch capabilities using the same basic technology employed in his digging operations. In fact, launching projectiles up was what inspired him to launch them down deep into the ground in the first place.

“I would not have left ‘conventional’ aerospace unless there was a path forward for spaceflight,” Russell told me in a conversation we had about his vision for his company’s inventions beyond Earth’s atmosphere. He was referring to his decision to leave Blue Origin after he’d led their crew capsule and vertical takeoff and landing vehicle development to found HyperSciences. I’d heard that Russell had history with the Bezos-led rocket company, but as a lifelong space nerd, I was very excited to hear the extent of his background in aerospace and how it tied into just about everything about his drilling company.

“I was the black sheep of the family that went into the aerospace arena instead of into mining,” he told me, jokingly, before reminiscing about his amateur astronomy hobby and desire to be an astronaut in his younger days. Russell is the third generation of a family of successful miners from Idaho.

Advertisement

It is Rocket Science

The future HyperSciences founder obtained a master’s degree in Aero Astro Engineering from Stanford University before spending some engineering time at Boeing first, then Kistler Aerospace, where he worked with a man who would eventually become Blue Origin’s first president, Rob Meyerson. Russell made the transition to Jeff Bezos’s space venture himself for a time, but as the company moved more in the direction of becoming a traditional launch provider, he made the decision to circle back around to his family mining days where he’d been considering some underground-type space industry ideas that needed more attention to flesh out.

The result of that return home would eventually lead to the invention of the HyperDrill and the step-change Russell was looking for to be able to turn his attention skyward again. “My brother and I drilled the deepest holes in America right after I left Blue Origin, and it all seemed like rocket science to me,” he recalled.

So, how does a drill transform into a rocket? While the technology itself is the product of very innovative and intelligent minds, the concept overall is simple. A projectile (or rocket payload, rather) is loaded into a long tube that’s been drilled underground, and then fuel is ignited in the bottom of the tube to propel it at hypersonic speed towards space, a second transfer stage possibly being implemented for orbital entry. The company calls the actual launching device the HyperCore Engine. By essentially separating the fuel and the payload of a rocket, the process of putting things into orbit becomes cheaper, safer, and achievable at a much faster rate of launch than anything even being planned by the likes of SpaceX and Blue Origin.

This kind of technology proposition gained NASA’s interest, and HyperSciences has since won a Phase I innovation award for from the agency, the testing for which was successfully completed at Spaceport America in New Mexico at the end of January this year. With this achievement under their belt, Russell’s long-time spaceflight dreams are really starting to take shape.

Looking Beyond Earth

Tying the team’s mining and space technology ambitions neatly together, Russell also told me that his time at Blue Origin contributed more than just direct experience with spaceflight development to his hypersonic launch ambitions. Bezos’s “test early, test often” philosophy was directly relevant to a technology involving speeds 3-6 times the speed of sound – frequent flight testing is a must.

“At this point I realized, you really have to change the paradigm, and you need to test an awful lot,” he explained. “I thought to myself, if you want to practice a lot in hypersonics, what you want to do is find an industry that needs this.” With HyperSciences established and making great progress, Russell’s plan looks to have worked just as he’d imagined. “Every 15 seconds, we’re firing something at hypersonic speeds. Nobody does that. NASA doesn’t do it. Boeing doesn’t do it. But we do it.”

Advertisement

There was yet another aspect to Russell’s plan in developing his technology that I thought was pretty exciting – crowdsourced investment. Unlike SpaceX and Blue Origin where investment isn’t really accessible to day-to-day citizens wanting to be a part of the “next big thing”, HyperSciences’ latest funding round is being hosted by SeedInvest. This approach provides a real ownership opportunity for pretty much anyone excited about things like aerospace and clean energy, and it’s open until March 22, 2019.

“Every 15 seconds, we’re firing something at hypersonic speeds. Nobody does that. NASA doesn’t do it. Boeing doesn’t do it. But we do it.”

As a native space nerd, I also had to prod Russell about taking HyperSciences’ tech to Mars – did he see a place for it there, whether it be for underground geothermal-type energy hunting or habitat digging? Turns out, he was several steps ahead of me. “I think the next bit of space exploration really does need to drill holes,” he said, acknowledging my sentiments about taking the tech off-planet. “In our patents, we have some applications that aren’t terrestrial.” How’s that for forward thinking?

“Hypersonics is not just about space. It’s a brand new way – a brand new engine,” Russell emphasized to me.

The disruptions already caused by Elon Musk in the same arenas HyperSciences is aiming for have made so many inroads where strict boundaries once stood, and it’s very exciting to see another space-driven company come along and want to keep pushing those boundaries into another phase of development all together. Visiting HyperSciences’ SeedInvest page is a great place to learn more details about the company’s plans and the benefits investors can gain by being a part of their future-forward technology.

The video below provides some exciting visuals and information surrounding the aerospace applications for HyperSciences’ technology, as demonstrated for their NASA Phase I funding award.

Advertisement

Accidental computer geek, fascinated by most history and the multiplanetary future on its way. Quite keen on the democratization of space. | It's pronounced day-sha, but I answer to almost any variation thereof.

Energy

Tesla Energy is the world’s top global battery storage system provider again

Tesla Energy captured 15% of the battery storage segment’s global market share in 2024.

Published

on

Credit: Tesla

Tesla Energy held its top position in the global battery energy storage system (BESS) integrator market for the second consecutive year, capturing 15% of global market share in 2024, as per Wood Mackenzie’s latest rankings.

Tesla Energy’s lead, however, is shrinking, as Chinese competitors like Sungrow are steadily increasing their global footprint, particularly in European markets.

Tesla Energy dominates in North America, but its lead is narrowing globally

Tesla Energy retained its leadership in the North American market with a commanding 39% share in 2024. Sungrow, though still ranked second in the region, saw its share drop from 17% to 10%. Powin took third place, even if the company itself filed for bankruptcy earlier this year, as noted in a Solar Power World report. 

On the global stage, Tesla Energy’s lead over Sungrow shrank from four points in 2023 to just one in 2024, indicating intensifying competition. Chinese firm CRRC came in third worldwide with an 8% share.

Wood Mackenzie ranked vendors based on MWh shipments with recognized revenue in 2024. According to analyst Kevin Shang, “Competition among established BESS integrators remains incredibly intense. Seven of the top 10 vendors last year struggled to expand their market share, remaining either unchanged or declining.”

Advertisement

Chinese integrators surge in Europe, falter in U.S.

China’s influence on the BESS market continues to grow, with seven of the global top 10 BESS integrators now headquartered in the country. Chinese companies saw a 67% year-over-year increase in European market share, and four of the top 10 BESS vendors in Europe are now based in China. In contrast, Chinese companies’ market share in North America dropped more than 30%, from 23% to 16% amid Tesla Energy’s momentum and the Trump administration’s policies.

Wood Mackenzie noted that success in the global BESS space will hinge on companies’ ability to adapt to divergent regulations and geopolitical headwinds. “The global BESS integrator landscape is becoming increasingly complex, with regional trade policies and geopolitical tensions reshaping competitive dynamics,” Shang noted, pointing to Tesla’s maintained lead and the rapid ascent of Chinese rivals as signs of a shifting industry balance.

“While Tesla maintains its global leadership, the rapid rise of Chinese integrators in Europe and their dominance in emerging markets like the Middle East signals a fundamental shift in the industry. Success will increasingly depend on companies’ ability to navigate diverse regulatory environments, adapt to local market requirements, and maintain competitive cost structures across multiple regions,” the analyst added.

Continue Reading

Energy

Tesla inks multi-billion-dollar deal with LG Energy Solution to avoid tariff pressure

Tesla has reportedly secured a sizable partnership with LGES for LFP cells, and there’s an extra positive out of it.

Published

on

Credit: Tesla

Tesla has reportedly inked a multi-billion-dollar deal with LG Energy Solution in an effort to avoid tariff pressure and domesticate more of its supply chain.

Reuters is reporting that Tesla and LGES, a South Korean battery supplier of the automaker, signed a $4.3 billion deal for energy storage system batteries. The cells are going to be manufactured by LGES at its U.S. factory located in Michigan, the report indicates. The batteries will be the lithium iron phosphate, or LFP, chemistry.

Tesla delivers 384,000 vehicles in Q2 2025, deploys 9.6 GWh in energy storage

It is a move Tesla is making to avoid buying cells and parts from overseas as the Trump White House continues to use tariffs to prioritize domestic manufacturing.

LGES announced earlier today that it had signed a $4.3 billion contract to supply LFP cells over three years to a company, but it did not identify the customer, nor did the company state whether the batteries would be used in automotive or energy storage applications.

The deal is advantageous for both companies. Tesla is going to alleviate its reliance on battery cells that are built out of the country, so it’s going to be able to take some financial pressure off itself.

For LGES, the company has reported that it has experienced slowed demand for its cells in terms of automotive applications. It planned to offset this demand lag with more projects involving the cells in energy storage projects. This has been helped by the need for these systems at data centers used for AI.

During the Q1 Earnings Call, Tesla CFO Vaibhav Taneja confirmed that the company’s energy division had been impacted by the need to source cells from China-based suppliers. He went on to say that the company would work on “securing additional supply chain from non-China-based suppliers.”

It seems as if Tesla has managed to secure some of this needed domestic supply chain.

Continue Reading

Energy

Tesla Shanghai Megafactory produces 1,000th Megapack for export to Europe

The Shanghai Megafactory was able to hit this milestone less than six months after it started producing the Megapack. 

Published

on

Credit: Tesla Asia/X

Tesla Energy has announced a fresh milestone for its newest Megapack factory. As per the electric vehicle maker, the Shanghai Megafactory has successfully produced its 1,000th Megapack battery. 

The facility was able to hit this milestone less than six months after it started producing the grid-scale battery system. 

New Tesla Megapack Milestone

As per Tesla Asia in a post on its official accounts on social media platform X, the 1,000th Megapack unit that was produced at the Shanghai Megafactory would be exported to Europe. As noted in a CNEV Post report, Tesla’s energy products are currently deployed in over 65 countries and regions globally. This allows Tesla Energy to compete in energy markets that are both emerging and mature.

To commemorate the 1,000th Megapack produced at the Shanghai Megafactory, the Tesla China team posted with the grid-scale battery with celebratory balloons that spelled “Megapack 1000.” The milestone was celebrated by Tesla enthusiasts on social media, especially since the Shanghai Megafactory only started its operations earlier this year.

Quick Megafactory Ramp

The Shanghai Megafactory, similar to Tesla’s other key facilities in China, was constructed quickly. The facility started its construction on May 23, 2024, and it was hailed as Tesla’s first entry storage project outside the United States. Less than a year later, on February 11, 2025, the Shanghai Megafactory officially started producing Megapack batteries. And by March 21, 2025, Tesla China noted that it had shipped the first batch of Megapack batteries from the Shanghai plant to foreign markets.

Advertisement

While the Shanghai Megafactory is still not at the same level of output as Tesla’s Lathrop Megafactory, which produces about 10,000 Megapacks per year, its ramp seems to be quite steady and quick. It would then not be surprising if Tesla China announces the Shanghai Megafactory’s 2,000th Megapack milestone in the coming months.

Continue Reading

Trending