News
NASA says SpaceX's Crew Dragon abort test is go for launch on doomed Falcon 9 rocket
NASA has formally given SpaceX permission for Crew Dragon’s second launch – a crucial test flight that should be the last before SpaceX launches NASA astronauts to the International Space Station (ISS) for the first time ever.
Known as its In-Flight Abort (IFA) test, Crew Dragon will attempt to escape a Falcon 9 rocket while airborne, a feat that CEO Elon Musk says will almost certainly destroy the rocket in the process. Technically speaking, NASA and SpaceX completed what is known as a Launch Readiness Review (LRR) sometime on Thursday, allowing SpaceX to proceed with launch preparations. By all accounts, Crew Dragon’s IFA test will likely be one of the most spectacular SpaceX launches ever, given that it is all but guaranteed to result in the intentional in-flight failure of a massive Falcon 9 rocket – “destroyed in Dragon fire” according to Musk.
Thanks to a much smoother launch flow compared to Crew Dragon’s Demo-1 orbital launch debut on Falcon 9, SpaceX’s newest Crew Dragon capsule is scheduled to lift off from Kennedy Space Center Launch Complex 39A (KSC LC-39A) as early as 8 am EST (13:00 UTC), Saturday, January 18th. The In-Flight Abort test will likely be one of Crew Dragon’s most challenging hurdles yet but success would be a major boon for the spacecraft’s demonstrated safety. While both Boeing and SpaceX will ultimately ferry NASA astronauts to and from the ISS, only SpaceX chose to prove Crew Dragon’s in-flight abort capabilities in the real world.
Effectively condemned to destruction to support a greater cause after a productive life, Falcon 9 Block 5 booster B1046 rolled out to Pad 39A – Crew Dragon mounted atop it – on January 16th after successfully performing its last routine static fire on the 11th. As previously discussed on Teslarati, B1046 is the first Falcon 9 Block 5 booster completed by SpaceX and is thus also the oldest flightworthy rocket in the company’s substantial fleet.
“After becoming the first SpaceX booster to launch three times in December 2018, B1046 spent several months at SpaceX’s Hawthorne, CA factory undergoing inspections and refurbishment. At some point, SpaceX assigned the thrice-flown booster to support Crew Dragon’s In-Flight Abort (IFA) test – effectively a death sentence – and shipped the booster to Florida, where it publicly appeared for the first time in months on October 3rd, 2019. Given that four more Falcon 9 boosters have now successfully performed three (or even four) orbital-class launches each, B1046’s now-imminent demise is certainly disappointing but remains extremely pragmatic.”
Teslarati.com — January 15th, 2020
As such, there is arguably no better booster for SpaceX to expend even if its loss is still less satisfying than a successful post-launch landing. In fact, aside from NASA’s prematurely-retired Space Shuttle, the entire history of orbital-class rocketry has effectively operated on the assumption that it’s both normal and necessary for rockets to be almost entirely expendable.
Only by sheer force of will has SpaceX turned that assumption on its head, making the act of expending Falcon 9 or Falcon Heavy boosters feel suddenly morose. Even then, the practice of propulsively landing orbital-class boosters is scarcely four years old, while reusing those boosters has been ongoing for less than three years. As such, B1046’s demise should be enjoyed for what it ultimately is: the spectacular retirement of a rocket that has already helped launch three separate payloads to orbit.
Perhaps even more importantly, B1046’s sacrifice should – if things go as planned – also pave the way for Crew Dragon to launch its first NASA astronauts into orbit just a few months from now. For the test to be successful, however, Crew Dragon will have to perform an extremely precise string of maneuvers – the failure of any one of which could potentially lead to the spacecraft’s destruction.
“Traveling as fast as Mach 2.5 (860 m/s) at an altitude of 28 kilometers (17 mi), Crew Dragon will ignite its abort thrusters and attempt to escape, the very act of which will likely hammer the spacecraft’s windward surfaces with an extra dozen or so metric tons (~25,000 lb) of aerodynamic pressure. Crew Dragon C205 could thus find itself traveling almost Mach 3 (more than a kilometer per second) moments after separating from Falcon 9, eventually reaching an apogee of almost 75 km (45 mi), after which it will reenter the bulk of Earth’s atmosphere and have to deploy an array of parachutes to ensure a gentle Atlantic Ocean splashdown.”
Teslarati.com — January 13th, 2020

Unfortunately, Crew Dragon escaping a supersonic Falcon 9 also means that that same Falcon 9 – basically a thin, flexible tube designed to be as light as possible – will meet a supersonic blast of air the moment Dragon’s SuperDraco abort thrusters ignite. A bit like if a hurricane on all kinds of meteorological steroids just sort of punched a soda can for fun, that airstream will almost certainly obliterate Falcon 9’s sacrificial upper stage into a sort of aluminum snow, quickly revealing – and likely then destroying – B1046’s carbon fiber interstage.
The rest of the thrice-flown Falcon 9 booster is also liable to break up after that supersonic punch. In fact, SpaceX engineers are so confident in B1046’s imminent demise that the booster will have neither landing legs or grid fins come launch. In a best-case scenario, if, against all odds, B1046 survives Dragon’s escape, the intact booster will subsequently impact the Atlantic Ocean at terminal velocity and become a nice, artificial reef off the coast of Florida. Stay tuned for updates from Teslarati and photographers Jamie Groh and Richard Angle as Falcon 9 B1046’s demise inches ever closer.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor
Tesla has officially launched public Robotaxi rides in Austin, Texas, without a Safety Monitor in the vehicle, marking the first time the company has removed anyone from the vehicle other than the rider.
The Safety Monitor has been present in Tesla Robotaxis in Austin since its launch last June, maintaining safety for passengers and other vehicles, and was placed in the passenger’s seat.
Tesla planned to remove the Safety Monitor at the end of 2025, but it was not quite ready to do so. Now, in January, riders are officially reporting that they are able to hail a ride from a Model Y Robotaxi without anyone in the vehicle:
I am in a robotaxi without safety monitor pic.twitter.com/fzHu385oIb
— TSLA99T (@Tsla99T) January 22, 2026
Tesla started testing this internally late last year and had several employees show that they were riding in the vehicle without anyone else there to intervene in case of an emergency.
Tesla has now expanded that program to the public. It is not active in the entire fleet, but there are a “few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors,” Ashok Elluswamy said:
Robotaxi rides without any safety monitors are now publicly available in Austin.
Starting with a few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors, and the ratio will increase over time. https://t.co/ShMpZjefwB
— Ashok Elluswamy (@aelluswamy) January 22, 2026
Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing
The Robotaxi program also operates in the California Bay Area, where the fleet is much larger, but Safety Monitors are placed in the driver’s seat and utilize Full Self-Driving, so it is essentially the same as an Uber driver using a Tesla with FSD.
In Austin, the removal of Safety Monitors marks a substantial achievement for Tesla moving forward. Now that it has enough confidence to remove Safety Monitors from Robotaxis altogether, there are nearly unlimited options for the company in terms of expansion.
While it is hoping to launch the ride-hailing service in more cities across the U.S. this year, this is a much larger development than expansion, at least for now, as it is the first time it is performing driverless rides in Robotaxi anywhere in the world for the public to enjoy.
Investor's Corner
Tesla Earnings Call: Top 5 questions investors are asking
Tesla has scheduled its Earnings Call for Q4 and Full Year 2025 for next Wednesday, January 28, at 5:30 p.m. EST, and investors are already preparing to get some answers from executives regarding a wide variety of topics.
The company accepts several questions from retail investors through the platform Say, which then allows shareholders to vote on the best questions.
Tesla does not answer anything regarding future product releases, but they are willing to shed light on current timelines, progress of certain projects, and other plans.
There are five questions that range over a variety of topics, including SpaceX, Full Self-Driving, Robotaxi, and Optimus, which are currently in the lead to be asked and potentially answered by Elon Musk and other Tesla executives:
- You once said: Loyalty deserves loyalty. Will long-term Tesla shareholders still be prioritized if SpaceX does an IPO?
- Our Take – With a lot of speculation regarding an incoming SpaceX IPO, Tesla investors, especially long-term ones, should be able to benefit from an early opportunity to purchase shares. This has been discussed endlessly over the past year, and we must be getting close to it.
- When is FSD going to be 100% unsupervised?
- Our Take – Musk said today that this is essentially a solved problem, and it could be available in the U.S. by the end of this year.
- What is the current bottleneck to increase Robotaxi deployment & personal use unsupervised FSD? The safety/performance of the most recent models or people to monitor robots, robotaxis, in-car, or remotely? Or something else?
- Our Take – The bottleneck seems to be based on data, which Musk said Tesla needs 10 billion miles of data to achieve unsupervised FSD. Once that happens, regulatory issues will be what hold things up from moving forward.
- Regarding Optimus, could you share the current number of units deployed in Tesla factories and actively performing production tasks? What specific roles or operations are they handling, and how has their integration impacted factory efficiency or output?
- Our Take – Optimus is going to have a larger role in factories moving forward, and later this year, they will have larger responsibilities.
- Can you please tie purchased FSD to our owner accounts vs. locked to the car? This will help us enjoy it in any Tesla we drive/buy and reward us for hanging in so long, some of us since 2017.
- Our Take – This is a good one and should get us some additional information on the FSD transfer plans and Subscription-only model that Tesla will adopt soon.
Tesla will have its Earnings Call on Wednesday, January 28.
Elon Musk
Elon Musk shares incredible detail about Tesla Cybercab efficiency
Elon Musk shared an incredible detail about Tesla Cybercab’s potential efficiency, as the company has hinted in the past that it could be one of the most affordable vehicles to operate from a per-mile basis.
ARK Invest released a report recently that shed some light on the potential incremental cost per mile of various Robotaxis that will be available on the market in the coming years.
The Cybercab, which is detailed for the year 2030, has an exceptionally low cost of operation, which is something Tesla revealed when it unveiled the vehicle a year and a half ago at the “We, Robot” event in Los Angeles.
Musk said on numerous occasions that Tesla plans to hit the $0.20 cents per mile mark with the Cybercab, describing a “clear path” to achieving that figure and emphasizing it is the “full considered” cost, which would include energy, maintenance, cleaning, depreciation, and insurance.
Probably true
— Elon Musk (@elonmusk) January 22, 2026
ARK’s report showed that the Cybercab would be roughly half the cost of the Waymo 6th Gen Robotaxi in 2030, as that would come in at around $0.40 per mile all in. Cybercab, at scale, would be at $0.20.

Credit: ARK Invest
This would be a dramatic decrease in the cost of operation for Tesla, and the savings would then be passed on to customers who choose to utilize the ride-sharing service for their own transportation needs.
The U.S. average cost of new vehicle ownership is about $0.77 per mile, according to AAA. Meanwhile, Uber and Lyft rideshares often cost between $1 and $4 per mile, while Waymo can cost between $0.60 and $1 or more per mile, according to some estimates.
Tesla’s engineering has been the true driver of these cost efficiencies, and its focus on creating a vehicle that is as cost-effective to operate as possible is truly going to pay off as the vehicle begins to scale. Tesla wants to get the Cybercab to about 5.5-6 miles per kWh, which has been discussed with prototypes.
Additionally, fewer parts due to the umboxed manufacturing process, a lower initial cost, and eliminating the need to pay humans for their labor would also contribute to a cheaper operational cost overall. While aspirational, all of the ingredients for this to be a real goal are there.
It may take some time as Tesla needs to hammer the manufacturing processes, and Musk has said there will be growing pains early. This week, he said regarding the early production efforts:
“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”