Connect with us

News

NASA says SpaceX's Crew Dragon abort test is go for launch on doomed Falcon 9 rocket

Crew Dragon capsule C205 and Falcon 9 B1046 are vertical at Pad 39A for the booster's fourth and final launch. (SpaceX)

Published

on

NASA has formally given SpaceX permission for Crew Dragon’s second launch – a crucial test flight that should be the last before SpaceX launches NASA astronauts to the International Space Station (ISS) for the first time ever.

Known as its In-Flight Abort (IFA) test, Crew Dragon will attempt to escape a Falcon 9 rocket while airborne, a feat that CEO Elon Musk says will almost certainly destroy the rocket in the process. Technically speaking, NASA and SpaceX completed what is known as a Launch Readiness Review (LRR) sometime on Thursday, allowing SpaceX to proceed with launch preparations. By all accounts, Crew Dragon’s IFA test will likely be one of the most spectacular SpaceX launches ever, given that it is all but guaranteed to result in the intentional in-flight failure of a massive Falcon 9 rocket – “destroyed in Dragon fire” according to Musk.

Thanks to a much smoother launch flow compared to Crew Dragon’s Demo-1 orbital launch debut on Falcon 9, SpaceX’s newest Crew Dragon capsule is scheduled to lift off from Kennedy Space Center Launch Complex 39A (KSC LC-39A) as early as 8 am EST (13:00 UTC), Saturday, January 18th. The In-Flight Abort test will likely be one of Crew Dragon’s most challenging hurdles yet but success would be a major boon for the spacecraft’s demonstrated safety. While both Boeing and SpaceX will ultimately ferry NASA astronauts to and from the ISS, only SpaceX chose to prove Crew Dragon’s in-flight abort capabilities in the real world.

Effectively condemned to destruction to support a greater cause after a productive life, Falcon 9 Block 5 booster B1046 rolled out to Pad 39A – Crew Dragon mounted atop it – on January 16th after successfully performing its last routine static fire on the 11th. As previously discussed on Teslarati, B1046 is the first Falcon 9 Block 5 booster completed by SpaceX and is thus also the oldest flightworthy rocket in the company’s substantial fleet.

Advertisement

“After becoming the first SpaceX booster to launch three times in December 2018, B1046 spent several months at SpaceX’s Hawthorne, CA factory undergoing inspections and refurbishment. At some point, SpaceX assigned the thrice-flown booster to support Crew Dragon’s In-Flight Abort (IFA) test – effectively a death sentence – and shipped the booster to Florida, where it publicly appeared for the first time in months on October 3rd, 2019. Given that four more Falcon 9 boosters have now successfully performed three (or even four) orbital-class launches each, B1046’s now-imminent demise is certainly disappointing but remains extremely pragmatic.”

Teslarati.com — January 15th, 2020

https://twitter.com/CiroTweeter/status/1217985313949339649

As such, there is arguably no better booster for SpaceX to expend even if its loss is still less satisfying than a successful post-launch landing. In fact, aside from NASA’s prematurely-retired Space Shuttle, the entire history of orbital-class rocketry has effectively operated on the assumption that it’s both normal and necessary for rockets to be almost entirely expendable.

Only by sheer force of will has SpaceX turned that assumption on its head, making the act of expending Falcon 9 or Falcon Heavy boosters feel suddenly morose. Even then, the practice of propulsively landing orbital-class boosters is scarcely four years old, while reusing those boosters has been ongoing for less than three years. As such, B1046’s demise should be enjoyed for what it ultimately is: the spectacular retirement of a rocket that has already helped launch three separate payloads to orbit.

Perhaps even more importantly, B1046’s sacrifice should – if things go as planned – also pave the way for Crew Dragon to launch its first NASA astronauts into orbit just a few months from now. For the test to be successful, however, Crew Dragon will have to perform an extremely precise string of maneuvers – the failure of any one of which could potentially lead to the spacecraft’s destruction.

Advertisement

“Traveling as fast as Mach 2.5 (860 m/s) at an altitude of 28 kilometers (17 mi), Crew Dragon will ignite its abort thrusters and attempt to escape, the very act of which will likely hammer the spacecraft’s windward surfaces with an extra dozen or so metric tons (~25,000 lb) of aerodynamic pressure. Crew Dragon C205 could thus find itself traveling almost Mach 3 (more than a kilometer per second) moments after separating from Falcon 9, eventually reaching an apogee of almost 75 km (45 mi), after which it will reenter the bulk of Earth’s atmosphere and have to deploy an array of parachutes to ensure a gentle Atlantic Ocean splashdown.”

Teslarati.com — January 13th, 2020

On November 13th, SpaceX successfully static fired Crew Dragon’s SuperDraco abort thrusters. Two months later, the spacecraft is set for its critical In-Flight Abort (IFA) test. (SpaceX)

Unfortunately, Crew Dragon escaping a supersonic Falcon 9 also means that that same Falcon 9 – basically a thin, flexible tube designed to be as light as possible – will meet a supersonic blast of air the moment Dragon’s SuperDraco abort thrusters ignite. A bit like if a hurricane on all kinds of meteorological steroids just sort of punched a soda can for fun, that airstream will almost certainly obliterate Falcon 9’s sacrificial upper stage into a sort of aluminum snow, quickly revealing – and likely then destroying – B1046’s carbon fiber interstage.

The rest of the thrice-flown Falcon 9 booster is also liable to break up after that supersonic punch. In fact, SpaceX engineers are so confident in B1046’s imminent demise that the booster will have neither landing legs or grid fins come launch. In a best-case scenario, if, against all odds, B1046 survives Dragon’s escape, the intact booster will subsequently impact the Atlantic Ocean at terminal velocity and become a nice, artificial reef off the coast of Florida. Stay tuned for updates from Teslarati and photographers Jamie Groh and Richard Angle as Falcon 9 B1046’s demise inches ever closer.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla announces crazy new Full Self-Driving milestone

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

Published

on

Credit: Tesla

Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.

The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.

On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.

Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.

Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.

This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.

The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.

Continue Reading

News

Tesla Cybercab production begins: The end of car ownership as we know it?

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Published

on

Credit: Tesla | X

The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.

Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.

The Promise – A Radical Shift in Transportation Economics

Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.

Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.

Tesla ups Robotaxi fare price to another comical figure with service area expansion

It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.

However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).

The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.

The Dark Side – Job Losses and Industry Upheaval

With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.

Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.

There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.

Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.

It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.

Balancing Act – Who Wins and Who Loses

There are two sides to this story, as there are with every other one.

The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.

Elon Musk confirms Tesla Cybercab pricing and consumer release date

Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.

Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.

A Call for Thoughtful Transition

The Cybercab’s production debut forces us to weigh innovation against equity.

If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.

The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.

Continue Reading

News

Tesla Model 3 wins Edmunds’ Best EV of 2026 award

The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”

Published

on

Credit: Tesla

The Tesla Model 3 has won Edmunds‘ Top Rated Electric Car of 2026 award, beating out several other highly-rated and exceptional EV offerings from various manufacturers.

This is the second consecutive year the Model 3 beat out other cars like the Model Y, Audi A6 Sportback E-tron, and the BMW i5.

The car, which is Tesla’s second-best-selling vehicle behind the popular Model Y crossover, has been in the company’s lineup for nearly a decade. It offers essentially everything consumers could want from an EV, including range, a quality interior, performance, and Tesla’s Full Self-Driving suite, which is one of the best in the world.

The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”

In its Top Rated EVs piece on its website, it said about the Model 3:

“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is impressively well-rounded thanks to improved build quality, ride comfort, and a compelling combination of efficiency, performance, and value.”

Additionally, Jonathan Elfalan, Edmunds’ Director of Vehicle Testing, said:

“The Model 3 offers just about the perfect combination of everything — speed, range, comfort, space, tech, accessibility, and convenience. It’s a no-brainer if you want a sensible EV.”

The Model 3 is the perfect balance of performance and practicality. With the numerous advantages that an EV offers, the Model 3 also comes in at an affordable $36,990 for its Rear-Wheel Drive trim level.

Continue Reading