Connect with us

News

NASA and SpaceX probably can’t terraform Mars but that doesn’t matter

Published

on

In recent weeks, a great deal of exaggerative noise has been spread wide about the supposed impossibility of making the planet Mars more Earth-like and hospitable, a concept known as terraforming. The reality is quite a bit different, especially within the context of any SpaceX or NASA-driven human outposts or colonization attempts.

Triggered by comparatively reasonable research just published by two experienced planetary scientists, much of the hyperbolic media coverage that followed failed to properly frame the true challenges of terraforming the Red Planet.

The entire limb of Mars captured by ESA’s Mars Express orbiter, June 2017.

Keeping the cart behind the horse

Before anything else, it’s critical to take a step back from the idea of terraforming and consider the simpler facts of any human presence on Mars. First, the rationale for a permanent human presence on Mars is largely independent of the environmental conditions on the planet – it’s a huge help to have basic resources available in situ (on site), but the difficulty of surviving in a given non-Earth environment is immaterial to the human desire to both explore and survive.

Assuming we humans really do want to ensure that a subset of ourselves can independently survive any truly global catastrophe on Earth, be it natural or artificial, we will find a way to do so in even the harshest of environments. Living on Mars would be downright luxurious compared to life aboard the International Space Station, thanks largely to ~1/3rd Earth gravity, accessible natural resources to replenish consumables, an Earthlike day and night cycle, considerably more forgiving temperature extremes, and much more.

 

Despite the inhospitable conditions, human presence aboard the ISS has been uninterrupted for nearly 20 years, even though the average stay per crewmember sits around six months. The ISS also has the luxury of a 90 minute day/night cycle, 100% unfiltered sunlight for peak solar panel efficiency, regular resupply missions from Earth, and an escape route in the event of a catastrophic failure. That escape method (Soyuz capsules docked to the station) has not once been used, aside from a handful of instances where crew boarded their escape vehicles as a cautionary measure during unusually risky space debris events, an absolute non-issue on Mars’ surface.

Put simply: if humans can live in orbit for long periods, they can also survive on Mars with at least the same level of difficulty.

Getting there is the hardest part

By taking natural resources available on Mars (namely water and carbon dioxide) and using them to repopulate the planet’s withered atmosphere, it has long been hoped that the Martian surface might be brought much closer to that of Earth, with a thicker atmosphere translating into familiar air pressure and a far warmer climate. In its current state, humans would always need to wear pressure suits and carry oxygen when traveling beyond their Martian habitats, as Mars’ 0.06 bar atmosphere would be approximately as forgiving as the naked vacuum of space and only moderately warmer.

https://twitter.com/_TheSeaning/status/1026194288886071296

Terraforming could potentially alleviate those significant points against the Red Planet, although updated research published this year (2018) appears to indicate otherwise. In reality, Jakosky and Edwards’ study simply emphasizes and adds on to what should already have been wildly apparent – making desolate planets Earthlike is almost invariably going to be an unfathomably difficult (but by no means impossible) challenge, and is most likely beyond the reach of present-day humanity.

 

Advertisement

It also happens to be the case that terraforming as a concept is utterly irrelevant without the means to get to and – more importantly – transport respectable amounts of cargo to the bodies one hopes to one day transform. SpaceX’s BFR transportation system is one such acknowledgment of that problem – the issue with Mars colonization or really any basic human presence at all is not surviving after arrival, but instead actually getting there in the first place and doing so without taking decades or bankrupting entire nations.

Extremely affordable transport to, from, and between orbits happen to be the most unequivocal requirement for both a permanent human presence on other planets and have any hope at all of terraforming them, but it just so happens that the latter is 100% irrelevant and impossible without the former. Let’s seriously worry and argue about terraforming Mars once we can do so from the surface of the Red Planet and focus first on getting there.


For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet (including fairing catcher Mr Steven) check out our brand new LaunchPad and LandingZone newsletters!

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla rolls out new Supercharging safety feature in the U.S.

Published

on

tesla's nacs charging connector
Credit: Tesla

Tesla has rolled out a new Supercharging safety feature in the United States, one that will answer concerns that some owners may have if they need to leave in a pinch.

It is also a suitable alternative for non-Tesla chargers, like third-party options that feature J1772 or CCS to NACS adapters.

The feature has been available in Europe for some time, but it is now rolling out to Model 3 and Model Y owners in the U.S.

With Software Update 2026.2.3, Tesla is launching the Unlatching Charge Cable function, which will now utilize the left rear door handle to release the charging cable from the port. The release notes state:

“Charging can now be stopped and the charge cable released by pulling and holding the rear left door handle for three seconds, provided the vehicle is unlocked, and a recognized key is nearby. This is especially useful when the charge cable doesn’t have an unlatch button. You can still release the cable using the vehicle touchscreen or the Tesla app.”

The feature was first spotted by Not a Tesla App.

This is an especially nice feature for those who commonly charge at third-party locations that utilize plugs that are not NACS, which is the Tesla standard.

For example, after plugging into a J1772 charger, you will still be required to unlock the port through the touchscreen, which is a minor inconvenience, but an inconvenience nonetheless.

Additionally, it could be viewed as a safety feature, especially if you’re in need of unlocking the charger from your car in a pinch. Simply holding open the handle on the rear driver’s door will now unhatch the port from the car, allowing you to pull it out and place it back in its housing.

This feature is currently only available on the Model 3 and Model Y, so Model S, Model X, and Cybertruck owners will have to wait for a different solution to this particular feature.

Advertisement
Continue Reading

News

LG Energy Solution pursuing battery deal for Tesla Optimus, other humanoid robots: report

Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.

Published

on

Credit: Tesla Optimus/X

A recent report has suggested that LG Energy Solution is in discussions to supply batteries for Tesla’s Optimus humanoid robot.

Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.

Humanoid robot battery deals

LG Energy Solution shares jumped more than 11% on the 28th after a report from the Korea Economic Daily claimed that the company is pursuing battery supply and joint development agreements with several humanoid robot makers. These reportedly include Tesla, which is developing Optimus, as well as multiple Chinese robotics companies.

China is already home to several leading battery manufacturers, such as CATL and BYD, making the robot makers’ reported interest in LG Energy Solution quite interesting. Market participants interpreted the reported outreach as a signal that performance requirements for humanoid robots may favor battery chemistries developed by companies like LG.

LF Energy Solution vs rivals

According to the report, energy density is believed to be the primary reason humanoid robot developers are evaluating LG Energy Solution’s batteries. Unlike electric vehicles, humanoid robots have significantly less space available for battery packs while requiring substantial power to operate dozens of joint motors and onboard artificial intelligence processors.

LG Energy Solution’s ternary lithium batteries offer higher energy density compared with rivals’ lithium iron phosphate (LFP) batteries, which are widely used by Chinese EV manufacturers. That advantage could prove critical for humanoid robots, where runtime, weight, and compact packaging are key design constraints.

Continue Reading

News

Tesla receives approval for FSD Supervised tests in Sweden

Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden in a press release.

Published

on

Credit: Grok Imagine

Tesla has received regulatory approval to begin tests of its Full Self-Driving Supervised system on public roads in Sweden, a notable step in the company’s efforts to secure FSD approval for the wider European market. 

FSD Supervised testing in Sweden

Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden following cooperation with national authorities and local municipalities. The approval covers the Swedish Transport Administration’s entire road network, as well as urban and highways in the Municipality of Nacka.

Tesla shared some insights into its recent FSD approvals in a press release. “The approval shows that cooperation between authorities, municipalities and businesses enables technological leaps and Nacka Municipality is the first to become part of the transport system of the future. The fact that the driving of the future is also being tested on Swedish roads is an important step in the development towards autonomy in real everyday traffic,” the company noted. 

With approval secured for FSD tests, Tesla can now evaluate the system’s performance in diverse environments, including dense urban areas and high-speed roadways across Sweden, as noted in a report from Allt Om Elbil. Tesla highlighted that the continued development of advanced driver assistance systems is expected to pave the way for improved traffic safety, increased accessibility, and lower emissions, particularly in populated city centers.

Tesla FSD Supervised Europe rollout

FSD Supervised is already available to drivers in several global markets, including Australia, Canada, China, Mexico, New Zealand, and the United States. The system is capable of handling city and highway driving tasks such as steering, acceleration, braking, and lane changes, though it still requires drivers to supervise the vehicle’s operations.

Tesla has stated that FSD Supervised has accumulated extensive driving data from its existing markets. In Europe, however, deployment remains subject to regulatory approval, with Tesla currently awaiting clearance from relevant authorities.

The company reiterated that it expects to start rolling out FSD Supervised to European customers in early 2026, pending approvals. It would then be unsurprising if the company secures approvals for FSD tests in other European territories in the coming months. 

Continue Reading