Connect with us

News

Exclusive: Porsche’s electric heart beats in the Taycan’s Zuffenhausen factory

(Photo: Teslarati)

Published

on

Beside the red-bricked walls of Porsche’s headquarters at Zuffenhausen, an electric transformation is taking place. It is a transformation that echoes back to its earliest days, despite the company’s pedigree with the internal combustion engine. Tall, modern-looking buildings sit side-by-side with older factories and shops that have literally witnessed history. The faint sounds of heavy machinery are audible in the distance, a reminder that work in the historic site is ongoing.

“We’re building a factory within a factory within a city with residences close by, hardly any space, and this in high speed,” says Porsche representative of the project David Tryggvason, lightly pointing out that the timeframe of the project is very Porsche-like: Sporty.

Porsche is actively engaged in a massive construction project in its Stuttgart-Zuffenhausen site, roughly 120 miles from Frankfurt, with the company running full throttle as it prepares for the production of the Taycan. The result of these efforts could only be described as a rebirth of sorts, since the company that started with an electric car is now pushing itself to re-embrace all-electric vehicles, perhaps just as intended by its founder, Ferdinand Porsche, more than a hundred years ago.

Porsche’s Zuffenhausen site is located near residential and business areas. (Photo: Teslarati)

An electric transition

A lot is riding on the Porsche Taycan. During the company’s annual press conference, Porsche CEO Oliver Blume and Deputy Chairman of the Executive Board Lutz Meschke emphasized how all-electric vehicles like the Taycan and its lineup of hybrid cars are pertinent for the company’s future. In a statement, Meschke noted that by 2030, vehicles powered by an internal combustion engine would likely be the exception to the rule.

“One thing is clear: from 2030 onwards; there probably won’t be any vehicle model from Porsche without an electric variant. I actually presume that by 2025, we will have electrified significantly more than half of our entire model range. But the combustion engine will still be around in 2030. Our 911 will hopefully still be driving with them for a long time to come. Conventionally powered vehicles will at that point be the niche in our electric fleet,” he said.

Before it can produce a successful electric vehicle, Porsche needs to ensure that it has the facilities necessary to build a completely different type of car. The veteran automaker opted to construct several new facilities to accommodate the Taycan’s production, and it had to overcome numerous challenges to make the buildout possible. The Zuffenhausen site is a stone’s throw away from a residential neighborhood, and the site itself is split by a four-lane road. With space being scarce, Tryggvason notes that the company did the only thing it can do: it built up. Overall, building the Taycan is complex. Setting up the facility even more so. For the project manager, the challenges were worth it. “We believe in the product,” David said.

Advertisement
-->
One of Porsche’s buildings for vehicle production in Zuffenhausen. (Photo: Teslarati)

A high-stakes, collective effort

The company’s bet on the Taycan is evident in its investment for the vehicle and the actions of its own employees. Porsche is spending about 6 billion euros (around $6.81 billion) for the development of its electric mobility initiatives. Porsche Production 4.0, a campaign aimed at ushering in a new era of vehicle production, is also underway. Accelerating these developments is a deal that the carmaker struck with its employees, who agreed to forego a small part of their collective salary increase in exchange for their participation in the Taycan’s production and release.

David Tryggvason and Porsche Press Spokesman Jorg Walz later directed me to the roof of one of the new buildings, and I was able to get a pretty good view of the factory itself. They pointed out how the Taycan starts its life by having its electric motors, batteries, and axles assembled. The electric car’s body then gets put together, painted, and transported across a long conveyor system where it can go through final assembly and married to its electric drive unit.

A key to the successful production run of the Porsche Taycan is the company’s target of manufacturing the vehicle in a “smart, lean and green” manner. Examples of these include a flexi-line that uses automated guided vehicles for simpler assembly despite the expansive customization requests from Taycan buyers, optimizations in the use of resources and space, and an initiative to ensure that the entire production process of the all-electric car at Porsche’s Stuttgart-Zuffenhausen site is CO2-neutral. This is made possible through several programs such as the electrification of logistics vehicles, the use of waste heat in the paint shop, and a pilot trial that involves the adoption of nitrogen-absorbing facade surfaces, to name a few.

A render of the Taycan’s production line. (Credit: Porsche)

Race-bred batteries for a race-bred electric car

Not one to waste a rare opportunity to ask for details about the Taycan, I decided to ask a little about the electric car’s battery performance. Over the past year, several great electric vehicles were released by veteran carmakers such as Jaguar and Mercedes-Benz, but inasmuch as the machines themselves were impressive, their batteries left much to be desired. The I-PACE, for all its stunning interior and excellent design, is pretty much the electric equivalent of a gas guzzler. The Mercedes-Benz EQC seems to be the same.

Porsche uses pouch cells from LG Chem in the Taycan’s battery pack, which is expected to give the vehicle over 300 miles of range per charge under the NEDC standard. The company is aiming for ultra-fast 350 kW charging as well, thanks to its 800-volt technology, which was used first in Porsche’s LMP1 racecar 919 Hybrid. I asked how the Taycan’s battery holds up when charged continually with such a high rate of charge. Walz smiled and candidly stated “We’re very optimistic.”

After the annual press conference, I was able to sit in for an informal discussion of Porsche’s electrification with executive board member Detlev von Platen. The Porsche exec highlighted that the Taycan’s battery cells were closely developed by the company, thanks to its experience from its high-performance hybrid vehicles. Examples include the legendary Porsche 918 Spyder hypercar and the three-time Le Mans-winning Porsche 919 Hybrid racecar, both of which required some work in their batteries.

The Mission E sedan concept displayed in the Porsche Museum. (Photo: Teslarati)

“So we’re absolutely involved, deeply involved, in the development of the (Taycan’s battery) cells and the technology behind it. We haven’t started last year with the Taycan. We have worked since a long time already on battery technology from motorsport. Our prototypes like the 919 Hybrid was electrified. So I would say, in general terms, that we have started to work on battery technology at least ten years now,” Von Platen candidly said.

I was reminded of David Tryggvason’s overview of the Taycan’s components a couple of days before, when he remarked that some of the Porsche personnel who worked for the 918 Spyder hypercar also worked in the development of the Taycan. Upon hearing Von Platen’s description of Porsche’s work with batteries, I couldn’t help but agree with his point. Porsche has produced several iconic vehicles in the past, and the majority of them are powered by the internal combustion engine. Despite this, it is difficult to argue that the best cars the company has ever produced, such as the 919 Hybrid, are imbued with electric propulsion at their core. Beneath the roaring engines of the vehicles were electric motors and batteries that ultimately unlocked the cars’ real potential.

Advertisement
-->
Porsche’s first vehicle is an all-electric car. (Photo: Teslarati)

From the past to the future

An engineer at heart, Ferdinand Porsche started with an electric car at the end of the 19th century. He later dipped his feet in hybrid propulsion, before going ahead and gaining mastery of the internal combustion engine. From this perspective, the development of the Taycan feels like a homage to the company’s roots, and this is a big reason why Porsche is dead serious about the vehicle. In what appears to be a gesture to prove this, the Taycan is being built on the company’s most historic site, and it will be produced alongside the 911, a vehicle that can only be dubbed as the quintessential Porsche.

As I grabbed my travel gear and scurried to the remaining shuttle that was awaiting my presence, I looked back at Porsche’s headquarters one last time. There in the dark sky stood a marvel of orderliness in this ever-changing world. It was a moment that can only to be described as surreal, when the past breathes new life into the future. Seconds later, as I buckled myself down on the shuttle seat and gazed into a disappearing Zuffenhausen site, the sounds of whirring machinery and vehicles rolling off the factory floor can be heard in the distance. Beneath this orchestra of sounds were the rhythmic thumps of heavy equipment that continued to work tirelessly to build Taycan’s upcoming production facilities.

I couldn’t help but imagine that the sounds were representative of the electric heartbeat of a carmaker, coming to life once more.

Simon is an experienced automotive reporter with a passion for electric cars and clean energy. Fascinated by the world envisioned by Elon Musk, he hopes to make it to Mars (at least as a tourist) someday. For stories or tips--or even to just say a simple hello--send a message to his email, simon@teslarati.com or his handle on X, @ResidentSponge.

Advertisement
Comments

News

Tesla hints toward Premium Robotaxi offering with Model S testing

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

Published

on

Credit: Sawyer Merritt | X

Tesla Model S vehicles were spotted performing validation testing with LiDAR rigs in California today, a pretty big switch-up compared to what we are used to seeing on the roads.

Tesla utilizes the Model Y crossover for its Robotaxi fleet. It is adequately sized, the most popular vehicle in its lineup, and is suitable for a wide variety of applications. It provides enough luxury for a single rider, but enough room for several passengers, if needed.

However, the testing has seemingly expanded to one of Tesla’s premium flagship offerings, as the Model S was spotted with the validation equipment that is seen entirely with Model Y vehicles. We have written several articles on Robotaxi testing mules being spotted across the United States, but this is a first:

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

It seems to hint that Tesla could add a premium, more luxury offering to its Robotaxi platform eventually. Think about it: Uber has Uber Black, Lyft has Lyft Black. These vehicles and services are associated with a more premium cost as they combine luxury models with more catered transportation options.

Tesla could be testing the waters here, and it could be thinking of adding the Model S to its fleet of ride-hailing vehicles.

Reluctant to remove the Model S from its production plans completely despite its low volume contributions to the overall mission of transitioning the world to sustainable energy, the flagship sedan has always meant something. CEO Elon Musk referred to it, along with its sibling Model X, as continuing on production lines due to “sentimental reasons.”

However, its purpose might have been expanded to justify keeping it around, and why not? It is a cozy, premium offering, and it would be great for those who want a little more luxury and are willing to pay a few extra dollars.

Of course, none of this is even close to confirmed. However, it is reasonable to speculate that the Model S could be a potential addition to the Robotaxi fleet. It’s capable of all the same things the Model Y is, but with more luxuriousness, and it could be the perfect addition to the futuristic fleet.

Continue Reading

News

Rivian unveils self-driving chip and autonomy plans to compete with Tesla

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

Published

on

Credit: Rivian

Rivian unveiled its self-driving chip and autonomy plans to compete with Tesla and others at its AI and Autonomy Day on Thursday in Palo Alto, California.

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

CEO RJ Scaringe said it will learn and become more confident and robust as more miles are driven and it gathers more data. This is what Tesla uses through a neural network, as it uses deep learning to improve with every mile traveled.

He said:

“I couldn’t be more excited for the work our teams are driving in autonomy and AI. Our updated hardware platform, which includes our in-house 1600 sparse TOPS inference chip, will enable us to achieve dramatic progress in self-driving to ultimately deliver on our goal of delivering L4. This represents an inflection point for the ownership experience – ultimately being able to give customers their time back when in the car.”

At first, Rivian plans to offer the service to personally-owned vehicles, and not operate as a ride-hailing service. However, ride-sharing is in the plans for the future, he said:

“While our initial focus will be on personally owned vehicles, which today represent a vast majority of the miles to the United States, this also enables us to pursue opportunities in the rideshare space.”

The Hardware

Rivian is not using a vision-only approach as Tesla does, and instead will rely on 11 cameras, five radar sensors, and a single LiDAR that will face forward.

It is also developing a chip in-house, which will be manufactured by TSMC, a supplier of Tesla’s as well. The chip will be known as RAP1 and will be about 50 times as powerful as the chip that is currently in Rivian vehicles. It will also do more than 800 trillion calculations every second.

RAP1 powers the Autonomy Compute Module 3, known as ACM3, which is Rivian’s third-generation autonomy computer.

ACM3 specs include:

  • 1600 sparse INT8 TOPS (Trillion Operations Per Second).
  • The processing power of 5 billion pixels per second.
  • RAP1 features RivLink, a low-latency interconnect technology allowing chips to be connected to multiply processing power, making it inherently extensible.
  • RAP1 is enabled by an in-house developed AI compiler and platform software

As far as LiDAR, Rivian plans to use it in forthcoming R2 cars to enable SAE Level 4 automated driving, which would allow people to sit in the back and, according to the agency’s ratings, “will not require you to take over driving.”

More Details

Rivian said it will also roll out advancements to the second-generation R1 vehicles in the near term with the addition of UHF, or Universal Hands-Free, which will be available on over 3.5 million miles of roadway in the U.S. and Canada.

Rivian will now join the competitive ranks with Tesla, Waymo, Zoox, and others, who are all in the race for autonomy.

Continue Reading

News

Tesla partners with Lemonade for new insurance program

Tesla recently was offered “almost free” coverage for Full Self-Driving by Lemonade’s Shai Wininger, President and Co-founder, who said it would be “happy to explore insuring Tesla FSD miles for (almost) free.”

Published

on

Credit: Tesla

Tesla owners in California, Oregon, and Arizona can now use Lemonade Insurance, the firm that recently said it could cover Full Self-Driving miles for “almost free.”

Lemonade, which offered the new service through its app, has three distinct advantages, it says:

  • Direct Connection for no telematics device needed
  • Better customer service
  • Smarter pricing

The company is known for offering unique, fee-based insurance rates through AI, and instead of keeping unclaimed premiums, it offers coverage through a flat free upfront. The leftover funds are donated to charities by its policyholders.

On Thursday, it announced that cars in three states would be able to be connected directly to the car through its smartphone app, enabling easier access to insurance factors through telematics:

Tesla recently was offered “almost free” coverage for Full Self-Driving by Lemonade’s Shai Wininger, President and Co-founder, who said it would be “happy to explore insuring Tesla FSD miles for (almost) free.”

The strategy would be one of the most unique, as it would provide Tesla drivers with stable, accurate, and consistent insurance rates, while also incentivizing owners to utilize Full Self-Driving for their travel miles.

Tesla Full Self-Driving gets an offer to be insured for ‘almost free’

This would make FSD more cost-effective for owners and contribute to the company’s data collection efforts.

Data also backs Tesla Full Self-Driving’s advantages as a safety net for drivers. Recent figures indicate it was nine times less likely to be in an accident compared to the national average, registering an accident every 6.36 million miles. The NHTSA says a crash occurs approximately every 702,000 miles.

Tesla also offers its own in-house insurance program, which is currently offered in twelve states so far. The company is attempting to enter more areas of the U.S., with recent filings indicating the company wants to enter Florida and offer insurance to drivers in that state.

Continue Reading