News
Porsche Taycan vs Tesla Model S: Powertrain, battery, performance, and features
The Tesla Model S has been sitting on top of the full-sized electric sedan market for a while now — and for good reason. The vehicle, after all, has played a huge part in changing the public’s perception of what electric cars are capable of. Fast, sleek, and equipped with real range, the Model S is a true no-compromises vehicle.
Among all the competitors for the Model S, there is one that is being developed to compete directly with the electric car. That is the Porsche Taycan, formerly known as the Mission E sedan. The Taycan made its debut during the 2015 Frankfurt Motor Show, and it has captured the imagination of EV enthusiasts ever since. Porsche is yet to unveil the production version of the Taycan, though it has several camouflaged units doing real-world tests today.
Porsche appears to be a legacy automaker that is really serious about making the Taycan a successful vehicle — so much so that the company actually released the car’s specs earlier this year. That said, how does the Taycan compare to the golden standard of four-door electric sedans? Here’s a brief comparison.
Powertrain
The Tesla Model S was initially released with an RWD option, though all variants of the vehicle today are now Dual Motor AWD. The Model S uses three-phase, four pole AC induction motors with copper rotors as its powertrain. The car is also equipped with a drive inverter with variable frequency drive and regenerative braking system.
In contrast, Porsche is using permanently excited synchronous motors (PSM) for the Taycan. In true Porsche tradition, the PSM motors are race-bred, having been used in the Porsche 919 Hybrid racecar. Naser Abu Daqqa, Porsche’s director of electric drive systems, notes that the coils used in the Taycan’s PSM motors are “made of wires that aren’t round, but rather rectangular, making it possible to pack the wires more tightly and get more copper into the coil machines—increasing power and torque with the same volume.”
Batteries and Charging
Tesla’s battery packs hold the standard as some of the finest in the industry. With the Model S, Tesla is using 75 kWh or 100 kWh microprocessor controlled, lithium-ion batteries. The Model S also uses 18650 cells as the components of its packs, which allow the vehicle to reach up to 315 miles per charge. The Tesla Model S is fully compatible with the ~120 kW Supercharger Network, which currently has more than 10,900 stalls worldwide.
The Porsche Taycan is set to use lithium-ion batteries as well. In a press release about the vehicle, the German legacy automaker noted that it would use 4-volt cells in the Taycan’s 800-volt battery pack. Porsche is designing the Taycan for rapid charging at speeds of up to ~350 kW through the upcoming IONITY Network, whose initial construction is underway.
The Porsche Taycan track testing at the Nurburgring.
Performance
The Tesla Model S has a reputation for being a family sedan that can humiliate supercars on the drag strip. The Model S P100D, the vehicle’s top trim, is capable of going from 0-60 mph in just 2.4 seconds with its Ludicrous Mode upgrade. The vehicle’s top speed is software-limited to 155 mph.
Porsche notes that the Taycan would have a 0-60 mph time of 3.5 seconds and a top speed of 155 mph. While this is not as quick as the top-tier Model S P100D, Porsche maintains that the Taycan would be able to handle extended track driving — an area that the Model S does not excel in. Porsche appears to be putting its foot where its mouth is with the Taycan’s track capabilities, as the vehicle has been spotted testing in the Nurburgring multiple times over the past few months.
Software
Tesla is noted for its Autopilot driver-assist system and firmware updates that add features to its vehicles. This was particularly exhibited last year when the company opted to “uncork” the 75D and 100D variants of the Model S and Model X, which lowered the vehicles’ 0-60 mph times. Tesla CEO Elon Musk also noted during the company’s Q2 2018 earnings call that Software V9 would be coming soon, which should introduce the first features of Tesla’s Full Self-Driving suite.
Porsche plans to feature the same system for the Taycan. In an interview with Autocar at the Geneva Motor Show, Porsche chairman Oliver Blume stated that the automaker is also looking to give the Taycan (then called the Mission E sedan) firmware upgrades that improve the car’s performance. Blume also alluded to some degree of self-driving for the vehicle, stating that “there are situations in traffic jams where you will be able to read a newspaper, but our customers take pleasure from driving and this will remain.”

Cargo Space
The Tesla Model S features a lot of space for cargo. The vehicle has a total cargo volume of 31.6 cu ft, comprised of 5.3 cu ft in the frunk, and 26.3 cu ft at the rear. With the back seats folded, the Model S features a very spacious 58.1 cu ft, which is enough to fit an inflatable twin mattress, for those times when drivers would prefer to sleep in their vehicles.
Porsche has not revealed the storage capacity of the Taycan yet, but Stefan Weckbach, the head of electric vehicles at the company, did mention that the car would have 100 liters of storage in the frunk. That’s about 3.53 cu ft, which is smaller than the Model S.
Price
The Model S 75D (the current base model) starts at $74,500, though higher trims like the supercar-slaying P100D could cost as much as $135,000. On the other hand, Porsche expects the Taycan to start at around the ~$75,000 – $85,000 range, putting it close to the price of an entry-level Panamera.
Availability
The Tesla Model S is currently available for purchase, though there are rumors that a refresh featuring an updated interior would be rolled out within the next few quarters. The Porsche Taycan, on the other hand, is expected to start production sometime in 2019, with deliveries likely hitting their stride around 2020.
News
Nvidia CEO Jensen Huang explains difference between Tesla FSD and Alpamayo
“Tesla’s FSD stack is completely world-class,” the Nvidia CEO said.
NVIDIA CEO Jensen Huang has offered high praise for Tesla’s Full Self-Driving (FSD) system during a Q&A at CES 2026, calling it “world-class” and “state-of-the-art” in design, training, and performance.
More importantly, he also shared some insights about the key differences between FSD and Nvidia’s recently announced Alpamayo system.
Jensen Huang’s praise for Tesla FSD
Nvidia made headlines at CES following its announcement of Alpamayo, which uses artificial intelligence to accelerate the development of autonomous driving solutions. Due to its focus on AI, many started speculating that Alpamayo would be a direct rival to FSD. This was somewhat addressed by Elon Musk, who predicted that “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.”
During his Q&A, Nvidia CEO Jensen Huang was asked about the difference between FSD and Alpamayo. His response was extensive:
“Tesla’s FSD stack is completely world-class. They’ve been working on it for quite some time. It’s world-class not only in the number of miles it’s accumulated, but in the way it’s designed, the way they do training, data collection, curation, synthetic data generation, and all of their simulation technologies.
“Of course, the latest generation is end-to-end Full Self-Driving—meaning it’s one large model trained end to end. And so… Elon’s AD system is, in every way, 100% state-of-the-art. I’m really quite impressed by the technology. I have it, and I drive it in our house, and it works incredibly well,” the Nvidia CEO said.
Nvidia’s platform approach vs Tesla’s integration
Huang also stated that Nvidia’s Alpamayo system was built around a fundamentally different philosophy from Tesla’s. Rather than developing self-driving cars itself, Nvidia supplies the full autonomous technology stack for other companies to use.
“Nvidia doesn’t build self-driving cars. We build the full stack so others can,” Huang said, explaining that Nvidia provides separate systems for training, simulation, and in-vehicle computing, all supported by shared software.
He added that customers can adopt as much or as little of the platform as they need, noting that Nvidia works across the industry, including with Tesla on training systems and companies like Waymo, XPeng, and Nuro on vehicle computing.
“So our system is really quite pervasive because we’re a technology platform provider. That’s the primary difference. There’s no question in our mind that, of the billion cars on the road today, in another 10 years’ time, hundreds of millions of them will have great autonomous capability. This is likely one of the largest, fastest-growing technology industries over the next decade.”
He also emphasized Nvidia’s open approach, saying the company open-sources its models and helps partners train their own systems. “We’re not a self-driving car company. We’re enabling the autonomous industry,” Huang said.
Elon Musk
Elon Musk confirms xAI’s purchase of five 380 MW natural gas turbines
The deal, which was confirmed by Musk on X, highlights xAI’s effort to aggressively scale its operations.
xAI, Elon Musk’s artificial intelligence startup, has purchased five additional 380 MW natural gas turbines from South Korea’s Doosan Enerbility to power its growing supercomputer clusters.
The deal, which was confirmed by Musk on X, highlights xAI’s effort to aggressively scale its operations.
xAI’s turbine deal details
News of xAI’s new turbines was shared on social media platform X, with user @SemiAnalysis_ stating that the turbines were produced by South Korea’s Doosan Enerbility. As noted in an Asian Business Daily report, Doosan Enerbility announced last October that it signed a contract to supply two 380 MW gas turbines for a major U.S. tech company. Doosan later noted in December that it secured an order for three more 380 MW gas turbines.
As per the X user, the gas turbines would power an additional 600,000+ GB200 NVL72 equivalent size cluster. This should make xAI’s facilities among the largest in the world. In a reply, Elon Musk confirmed that xAI did purchase the turbines. “True,” Musk wrote in a post on X.
xAI’s ambitions
Recent reports have indicated that xAI closed an upsized $20 billion Series E funding round, exceeding the initial $15 billion target to fuel rapid infrastructure scaling and AI product development. The funding, as per the AI startup, “will accelerate our world-leading infrastructure buildout, enable the rapid development and deployment of transformative AI products.”
The company also teased the rollout of its upcoming frontier AI model. “Looking ahead, Grok 5 is currently in training, and we are focused on launching innovative new consumer and enterprise products that harness the power of Grok, Colossus, and 𝕏 to transform how we live, work, and play,” xAI wrote in a post on its website.
Elon Musk
Elon Musk’s xAI closes upsized $20B Series E funding round
xAI announced the investment round in a post on its official website.
xAI has closed an upsized $20 billion Series E funding round, exceeding the initial $15 billion target to fuel rapid infrastructure scaling and AI product development.
xAI announced the investment round in a post on its official website.
A $20 billion Series E round
As noted by the artificial intelligence startup in its post, the Series E funding round attracted a diverse group of investors, including Valor Equity Partners, Stepstone Group, Fidelity Management & Research Company, Qatar Investment Authority, MGX, and Baron Capital Group, among others.
Strategic partners NVIDIA and Cisco Investments also continued support for building the world’s largest GPU clusters.
As xAI stated, “This financing will accelerate our world-leading infrastructure buildout, enable the rapid development and deployment of transformative AI products reaching billions of users, and fuel groundbreaking research advancing xAI’s core mission: Understanding the Universe.”
xAI’s core mission
Th Series E funding builds on xAI’s previous rounds, powering Grok advancements and massive compute expansions like the Memphis supercluster. The upsized demand reflects growing recognition of xAI’s potential in frontier AI.
xAI also highlighted several of its breakthroughs in 2025, from the buildout of Colossus I and II, which ended with over 1 million H100 GPU equivalents, and the rollout of the Grok 4 Series, Grok Voice, and Grok Imagine, among others. The company also confirmed that work is already underway to train the flagship large language model’s next iteration, Grok 5.
“Looking ahead, Grok 5 is currently in training, and we are focused on launching innovative new consumer and enterprise products that harness the power of Grok, Colossus, and 𝕏 to transform how we live, work, and play,” xAI wrote.