Connect with us

News

Porsche Taycan vs Tesla Model S: Powertrain, battery, performance, and features

Published

on

The Tesla Model S has been sitting on top of the full-sized electric sedan market for a while now — and for good reason. The vehicle, after all, has played a huge part in changing the public’s perception of what electric cars are capable of. Fast, sleek, and equipped with real range, the Model S is a true no-compromises vehicle.

Among all the competitors for the Model S, there is one that is being developed to compete directly with the electric car. That is the Porsche Taycan, formerly known as the Mission E sedan. The Taycan made its debut during the 2015 Frankfurt Motor Show, and it has captured the imagination of EV enthusiasts ever since. Porsche is yet to unveil the production version of the Taycan, though it has several camouflaged units doing real-world tests today.

Porsche appears to be a legacy automaker that is really serious about making the Taycan a successful vehicle — so much so that the company actually released the car’s specs earlier this year. That said, how does the Taycan compare to the golden standard of four-door electric sedans? Here’s a brief comparison.

Powertrain

The Tesla Model S was initially released with an RWD option, though all variants of the vehicle today are now Dual Motor AWD. The Model S uses three-phase, four pole AC induction motors with copper rotors as its powertrain. The car is also equipped with a drive inverter with variable frequency drive and regenerative braking system.

Advertisement
-->

In contrast, Porsche is using permanently excited synchronous motors (PSM) for the Taycan. In true Porsche tradition, the PSM motors are race-bred, having been used in the Porsche 919 Hybrid racecar. Naser Abu Daqqa, Porsche’s director of electric drive systems, notes that the coils used in the Taycan’s PSM motors are “made of wires that aren’t round, but rather rectangular, making it possible to pack the wires more tightly and get more copper into the coil machines—increasing power and torque with the same volume.”

Batteries and Charging

Tesla’s battery packs hold the standard as some of the finest in the industry. With the Model S, Tesla is using 75 kWh or 100 kWh microprocessor controlled, lithium-ion batteries. The Model S also uses 18650 cells as the components of its packs, which allow the vehicle to reach up to 315 miles per charge. The Tesla Model S is fully compatible with the ~120 kW Supercharger Network, which currently has more than 10,900 stalls worldwide.

The Porsche Taycan is set to use lithium-ion batteries as well. In a press release about the vehicle, the German legacy automaker noted that it would use 4-volt cells in the Taycan’s 800-volt battery pack. Porsche is designing the Taycan for rapid charging at speeds of up to ~350 kW through the upcoming IONITY Network, whose initial construction is underway.

The Porsche Taycan track testing at the Nurburgring.

Performance

The Tesla Model S has a reputation for being a family sedan that can humiliate supercars on the drag strip. The Model S P100D, the vehicle’s top trim, is capable of going from 0-60 mph in just 2.4 seconds with its Ludicrous Mode upgrade. The vehicle’s top speed is software-limited to 155 mph.

Porsche notes that the Taycan would have a 0-60 mph time of 3.5 seconds and a top speed of 155 mph. While this is not as quick as the top-tier Model S P100D, Porsche maintains that the Taycan would be able to handle extended track driving — an area that the Model S does not excel in. Porsche appears to be putting its foot where its mouth is with the Taycan’s track capabilities, as the vehicle has been spotted testing in the Nurburgring multiple times over the past few months.

Software

Tesla is noted for its Autopilot driver-assist system and firmware updates that add features to its vehicles. This was particularly exhibited last year when the company opted to “uncork” the 75D and 100D variants of the Model S and Model X, which lowered the vehicles’ 0-60 mph times. Tesla CEO Elon Musk also noted during the company’s Q2 2018 earnings call that Software V9 would be coming soon, which should introduce the first features of Tesla’s Full Self-Driving suite.

Advertisement
-->

Porsche plans to feature the same system for the Taycan. In an interview with Autocar at the Geneva Motor Show, Porsche chairman Oliver Blume stated that the automaker is also looking to give the Taycan (then called the Mission E sedan) firmware upgrades that improve the car’s performance. Blume also alluded to some degree of self-driving for the vehicle, stating that “there are situations in traffic jams where you will be able to read a newspaper, but our customers take pleasure from driving and this will remain.”

The Model S has enough space to lay out a mattress.

Cargo Space

The Tesla Model S features a lot of space for cargo. The vehicle has a total cargo volume of 31.6 cu ft, comprised of 5.3 cu ft in the frunk, and 26.3 cu ft at the rear. With the back seats folded, the Model S features a very spacious 58.1 cu ft, which is enough to fit an inflatable twin mattress, for those times when drivers would prefer to sleep in their vehicles.

Porsche has not revealed the storage capacity of the Taycan yet, but Stefan Weckbach, the head of electric vehicles at the company, did mention that the car would have 100 liters of storage in the frunk. That’s about 3.53 cu ft, which is smaller than the Model S.

Price

The Model S 75D (the current base model) starts at $74,500, though higher trims like the supercar-slaying P100D could cost as much as $135,000. On the other hand, Porsche expects the Taycan to start at around the ~$75,000 – $85,000 range, putting it close to the price of an entry-level Panamera.

Availability

The Tesla Model S is currently available for purchase, though there are rumors that a refresh featuring an updated interior would be rolled out within the next few quarters. The Porsche Taycan, on the other hand, is expected to start production sometime in 2019, with deliveries likely hitting their stride around 2020.

Advertisement
-->

Simon is an experienced automotive reporter with a passion for electric cars and clean energy. Fascinated by the world envisioned by Elon Musk, he hopes to make it to Mars (at least as a tourist) someday. For stories or tips--or even to just say a simple hello--send a message to his email, simon@teslarati.com or his handle on X, @ResidentSponge.

Advertisement
Comments

Elon Musk

Elon Musk and Tesla AI Director share insights after empty driver seat Robotaxi rides

The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.

Published

on

Ashok Elluswamy

Tesla CEO Elon Musk and AI Director Ashok Elluswamy celebrated Christmas Eve by sharing personal experiences with Robotaxi vehicles that had no safety monitor or occupant in the driver’s seat. Musk described the system’s “perfect driving” around Austin, while Elluswamy posted video from the back seat, calling it “an amazing experience.”

The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.

Elon and Ashok’s firsthand Robotaxi insights

Prior to Musk and the Tesla AI Director’s posts, sightings of unmanned Teslas navigating public roads were widely shared on social media. One such vehicle was spotted in Austin, Texas, which Elon Musk acknowleged by stating that “Testing is underway with no occupants in the car.” 

Based on his Christmas Eve post, Musk seemed to have tested an unmanned Tesla himself. “A Tesla with no safety monitor in the car and me sitting in the passenger seat took me all around Austin on Sunday with perfect driving,” Musk wrote in his post.

Elluswamy responded with a 2-minute video showing himself in the rear of an unmanned Tesla. The video featured the vehicle’s empty front seats, as well as its smooth handling through real-world traffic. He captioned his video with the words, “It’s an amazing experience!”

Advertisement
-->

Towards Unsupervised operations

During an xAI Hackathon earlier this month, Elon Musk mentioned that Tesla owed be removing Safety Monitors from its Robotaxis in Austin in just three weeks. “Unsupervised is pretty much solved at this point. So there will be Tesla Robotaxis operating in Austin with no one in them. Not even anyone in the passenger seat in about three weeks,” he said. Musk echoed similar estimates at the 2025 Annual Shareholder Meeting and the Q3 2025 earnings call.

Considering the insights that were posted Musk and Elluswamy, it does appear that Tesla is working hard towards operating its Robotaxis with no safety monitors. This is quite impressive considering that the service was launched just earlier this year.

Continue Reading

Elon Musk

Starlink passes 9 million active customers just weeks after hitting 8 million

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

Published

on

Credit: Starlink/X

SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark. 

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

9 million customers

In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day. 

“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote. 

That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.

Advertisement
-->

Starlink’s momentum

Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.

Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future. 

Continue Reading

News

NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.

Published

on

Credit: Grok Imagine

NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”

Jim Fan’s hands-on FSD v14 impressions

Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14

“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X. 

Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”

Advertisement
-->

The Physical Turing Test

The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning. 

This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.

Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.

Continue Reading